Publications by authors named "Yufen Xia"

A sustainable supply of lithium from salt-lake brines is necessary due to the surge in demand of the lithium-battery market. However, the presence of coexisting ions, particularly Na, poses a significant challenge due to the similarities in charge, electronic structure, and hydrated size. The electrochemical system with manganese (Mn)-based lithium-ion (Li) sieves electrodes is a promising method for Li recovery, but often suffers from geometric configuration distortion, which reduces their selectivity and capacity.

View Article and Find Full Text PDF

Arsenic contamination of groundwater harms the health of millions of people, especially As(III), which is extremely toxic and difficult to remediate. Herein, we fabricated a reliable La-Ce binary oxide-anchored carbon framework foam (La-Ce/CFF) adsorbent for As(III) deep removal. Its open 3D macroporous structure ensures fast adsorption kinetic.

View Article and Find Full Text PDF

Removing non-biodegradable Pb and Cu is the top priority in wastewater purification, while adsorption is a green technology to remove them. Herein, MgO-embedded granular hierarchical porous biochar (HP-MgO@BC) was fabricated by pyrolysis of porous Mg-infused chitosan beads. MgO nanoparticles were homogeneously embedded throughout the hierarchical porous biochar matrix in a high-density and accessible manner, thus providing a large number of easily accessible adsorption sites.

View Article and Find Full Text PDF
Article Synopsis
  • There is a lack of effective treatments for drug-resistant tuberculosis (TB), prompting the need for new drug development focused on targeting the enzyme UGM, crucial for bacterial cell wall integrity.
  • The study explores amides derived from rosmarinic acid as potential inhibitors of UGM, revealing that these amides have a significantly higher binding affinity compared to rosmarinic esters.
  • One compound, 5h, shows promising binding strength to UGM, indicating that this approach could pave the way for designing new anti-TB drugs.
View Article and Find Full Text PDF

An in situ screening assay for UDP-galactopyranose mutase (UGM, an essential enzyme of M. tuberculosis cell wall biosynthesis) has been developed to discover novel UGM inhibitors. The approach is based on the amide-forming reaction of an amino acid core with various cinnamic acids, followed by a direct fluorescence polarization assay to identify the best UGM binders without isolation and purification of the screened ligands.

View Article and Find Full Text PDF

In this study, we report a dynamic combinatorial approach along with highly efficient in situ screening to identify inhibitors of UDP-galactopyranose mutase (UGM), an essential enzyme involved in mycobacterial cell wall biosynthesis. These two technologies converged to the identification of a new UGM inhibitor chemotype. Importantly, the best molecule not only displayed high affinity for the target enzyme but also exhibited in vitro growth inhibition against whole Mycobacterium tuberculosis cells.

View Article and Find Full Text PDF

To get inside the properties of N,N-disubstituted Schiff bases, we synthesized three high-yielding benzaldehyde Schiff bases. We used the reaction between salicylaldehyde and different diamine compounds, including diamine, ethanediamine, and -phenylenediamine, determining the structure of obtained molecules by nuclear magnetic resonance spectroscopy and electrospray ionization mass spectroscopy. We thus evaluated the microbicidal and antitumor activity of these compounds, showing that salicylaldehyde-hydrazine hydrate Schiff base (compound ) significantly inhibited the growth of ; salicylaldehyde--phenylenediamine Schiff base (compound ) displayed a strong capability to inhibit the proliferation of leukemia cell lines K562 and HEL.

View Article and Find Full Text PDF

There is an urgent need to develop new antibacterial agents because of multidrug resistance by bacteria and fungi. Schiff bases (aldehyde or ketone-like compounds) exhibit intense antibacterial characteristics, and are therefore, promising candidates as antibacterial agents. To investigate the mechanism of action of newly designed benzaldehyde Schiff bases, a series of high-yielding benzaldehyde Schiff bases were synthesized, and their structures were determined by NMR and MS spectra data.

View Article and Find Full Text PDF