Publications by authors named "Yufan Xia"

Traditional polymer solid electrolytes (PSEs) suffer from low Li conductivity, poor kinetics and safety concerns. Here, we present a novel porous MOF glass gelled polymer electrolyte (PMG-GPE) prepared via a top-down strategy, which features a unique three-dimensional interconnected graded-aperture structure for efficient ion transport. Comprehensive analyses, including time-of-flight secondary ion mass spectrometry (TOF-SIMS), Solid-state 7Li magic-angle-spinning nuclear magnetic resonance (MAS-NMR), Molecular Dynamics (MD) simulations, and electrochemical tests, quantify the pore structures, revealing their relationship with ion conductivity that increases and then decreases as macropore proportion rises.

View Article and Find Full Text PDF

Mn-based fluorophosphates have attracted much attention as cathodes for sodium-ion batteries owing to their high cost effectiveness, considerable capacity, and stable framework. However, the fascinating Mn redox couple suffers from inadequate activation due to the Mn-O covalent character and poor electronic conductivity, impeding its further applications. Herein, a local electronic structure regulation strategy is proposed to improve the Mn redox potential and reversible capacity simultaneously through introducing elements with low-energy 3d orbitals to expand the energy gap between the e orbitals and Fermi energy of Na.

View Article and Find Full Text PDF

With the emergence of multidrug-resistant bacteria, the World Health Organization published a catalog of microorganisms urgently needing new antibiotics, with the carbapenem-resistant Acinetobacter baumannii designated as "critical". Such isolates, frequently detected in healthcare settings, pose a global pandemic threat. One way to facilitate a systemic view of bacterial metabolism and allow the development of new therapeutics is to apply constraint-based modeling.

View Article and Find Full Text PDF

Ofloxacin (OFL), one of the most widely used fluoroquinolone antibiotics, has been frequently detected in marine environments. Nonetheless, researchers are yet to focus on the effects of OFL on the benthos. In the present study, marine clams (Ruditapes philippinarum) were exposed to OFL (0.

View Article and Find Full Text PDF

Layered oxides of sodium-ion batteries suffer from severe side reactions on the electrode/electrolyte interface, leading to fast capacity degradation. Although surface reconstruction strategies are widely used to solve the above issues, the utilization of the low-cost wet chemical method is extremely challenging for moisture-sensitive Na-based oxide materials. Here, the solvation tuning strategy is proposed to overcome the deterioration of NaNiMnFeO in water-based solution and conduct the surface reconstruction.

View Article and Find Full Text PDF

The pollution of quinolone antibiotics in the marine environment has attracted widespread attention, especially for ofloxacin (OFL) and oxolinic acid (OXO) due to their frequent detection. However, few studies have been conducted to assess the behaviors and microbial community response to these antibiotics in marine sediments, particularly for potential antibiotic-resistant bacteria. In this work, the adsorption characteristics, natural attenuation characteristics, and variation of microbial communities of OFL and OXO in marine sediments were investigated.

View Article and Find Full Text PDF

Metal anodes are emerging as culminating solutions for the development of energy-dense batteries in either aprotic, aqueous, or solid battery configurations. However, unlike traditional intercalation electrodes, the low utilization of "hostless" metal anodes due to the intrinsically disordered plating/stripping impedes their practical applications. Herein, we report ordered planar plating/stripping in a bulk zinc (Zn) anode to achieve an extremely high depth of discharge exceeding 90% with negligible thickness fluctuation and long-term stable cycling.

View Article and Find Full Text PDF

Solid-state sodium metal batteries utilizing inorganic solid electrolytes (SEs) hold immense potentials such as intrinsical safety, high energy density, and environmental sustainability. However, the interfacial inhomogeneity/instability at the anode-SE interface usually triggers the penetration of sodium dendrites into the electrolyte, leading to short circuit and battery failure. Herein, confronting with the original nonuniform and high-resistance solid electrolyte interphase (SEI) at the Na-NaZrSiPO interface, an oxygen-regulated SEI innovative approach is proposed to enhance the cycling stability of anode-SEs interface, through a spontaneous reaction between the metallic sodium (containing trace amounts of oxygen) and the NaZrSiPO SE.

View Article and Find Full Text PDF

Tris(2-chloroethyl) phosphate (TCEP), one of the widely used organophosphorus flame retardants (OPFRs), has been frequently detected in the marine environment in the seas off China. The existing freshwater biotoxicity data are not suited to derivation of the seawater quality criteria of TCEP and evaluating the associated ecological risks. This study aimed at deriving water quality criteria (WQC) of TCEP for marine organisms based on species sensitivity distribution (SSD) approach using the acute toxicity data generated from multispecies bioassays and chronic toxicity data by converting acute data with the acute-to-chronic ratios (ACRs); the derived WQC were then used to evaluate the ecological risk for TCEP in China Seas.

View Article and Find Full Text PDF

A highly reversible zinc anode is crucial for the commercialization of zinc-ion batteries. However, the change in the microstructure of the electric double layer originated from the dynamic change in charge density on the electrode greatly impacts anode reversibility during charge/discharge, which is rarely considered in previous research. Herein, the zwitterion additive is employed to create an adaptive interface by coupling the transient zwitterion dynamics upon the change of interfacial charge density.

View Article and Find Full Text PDF

While the rechargeable aqueous zinc-ion batteries (AZIBs) have been recognized as one of the most viable batteries for scale-up application, the instability on Zn anode-electrolyte interface bottleneck the further development dramatically. Herein, we utilize the amino acid glycine (Gly) as an electrolyte additive to stabilize the Zn anode-electrolyte interface. The unique interfacial chemistry is facilitated by the synergistic "anchor-capture" effect of polar groups in Gly molecule, manifested by simultaneously coupling the amino to anchor on the surface of Zn anode and the carboxyl to capture Zn in the local region.

View Article and Find Full Text PDF

Long-term exposure of antibiotics at low level leads to the accumulation of antibiotics in environmental media and organisms, inducing the formation of antibiotic resistance genes. Seawater is an important sink for many contaminants. Here, laccase from Aspergillus sp.

View Article and Find Full Text PDF

Anion exchange offers great flexibility and high precision in phase control, compositional engineering, and optoelectronic property tuning. Different from previous successful anion exchange process in liquid solution, herein, a vapor-phase anion-exchange strategy is developed to realize the precise phase and bandgap control of large-scale inorganic perovskites by using gas injection cycle, producing some perovskites such as CsPbCl which has never been reported in thin film morphology. Ab initio calculations also provide the insightful mechanism to understand the impact of anion exchange on tuning the electronic properties and optimizing the structural stability.

View Article and Find Full Text PDF

We theoretically investigated the structural and electronic properties of the all-inorganic perovskite CsSn Pb Br, compared with the mixed perovskite compound MA Cs Sn Pb Br, based on first-principle calculations. It has been demonstrated that Pb and Sn atoms are inclined to occupy the lattice sites uniformly in the all-inorganic perovskite, and this is distinguished from the most stable configurations observed in the mixed Cs-MA system. It is interesting that small Sn atoms prefer to stay close to the large MA cations, leading to smaller local structural distortion.

View Article and Find Full Text PDF