Manipulation of periodic micro/nanostructures in polymer film is of great importance for academics and industrial applications in anticounterfeiting. However, with the increasing demand on information security, materials with time-dependent features are urgently required, especially the material where the same information can appear more than once on the time scale. Here, one concise strategy to realize time-dependent anticounterfeiting and "double-lock" information encryption based on a host-guest system is proposed, with one photoresponsive azopolymer as the host and one liquid-crystalline molecule as the guest.
View Article and Find Full Text PDFGraphene oxide (GO) with its atomic thickness and abundant functional groups holds great potential in molecular-scale membrane separation. However, constructing high-speed and highly selective water transport channels within GO membranes remains a key challenge. Herein, sulfonato calix[n]arenes (SCn) molecules with a cavity structure, hydrophilic entrance, and hydrophobic wall were incorporated into GO interlayer channels through a layer-by-layer assembly approach to facilitate water permeation in a water/ethanol separation process.
View Article and Find Full Text PDFNumerous anticounterfeiting platforms using photoresponsive materials have been designed to improve information security, enabling applications in anticounterfeiting technology. However, fabricating sophisticated micro/nanostructures using bidirectional mass transport to achieve advanced anticounterfeiting remains challenging. Here, we propose one strategy to achieve steerable mass transport in a photoresponsive system with the assistance of solvent vapor at room temperature.
View Article and Find Full Text PDFCD47 on the surface of tumor cells has become a research hot spot in immunotherapy and anticancer therapy, as it can bind to SIRPα protein on the surface of macrophages, which ultimately leads to immune escape of tumor cells. In the present study, molecular interactions between CD47 and human SIRPα proteins (including variant 1, V1 and variant 2, V2) were analyzed through molecular dynamics (MD) simulation and the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method. Hydrophobic interactions were found as the main driving force for the binding of CD47 on SIRPα.
View Article and Find Full Text PDFSurface morphing of organic materials is necessary for advances in semiconductor processing, optical gratings, anticounterfeiting etc., but it is still challenging, especially for its fundamental explanation and further applications like advanced anticounterfeiting. Here, we report one strategy to acquire surface deformation of the liquid-crystalline azopolymer film using a two-step method: selective photoisomerization of azopolymers and then solvent development.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are regarded as the next-generation, disruptive membrane materials, yet the straightforward fabrication of ultrathin MOF membranes on an unmodified porous support remains a critical challenge. In this work, we proposed a facile, one-step electrophoretic deposition (EPD) method for the growth of ultrathin zeolitic imidazole framework-8 (ZIF-8) membranes on a bare porous support. The crystallinity, morphology and coverage of ZIF-8 particles on support surface can be optimized via regulating EPD parameters, yet it is still difficult to ensure the integrity of a ZIF-8 membrane with the constant voltage mode.
View Article and Find Full Text PDFThe development of antithrombotic peptides targeting collagen was proven effective, and an effective antithrombotic peptide LEKNSTY was obtained in part I. However, the plasma stability of LEKNSTY was found to be not good enough. In this part, the LEKNSTY was further optimized for improvement in plasma stability by substitution using d-amino acid residues.
View Article and Find Full Text PDFIon transport is crucial for biological systems and membrane-based technologies from both fundamental and practical aspects. Unlike biological ion channels, realizing efficient ion sieving by using membranes with artificial ion channels remains an extremely challenging task. Inspired by biological ion channels with proper steric containment of target ions within affinitive binding sites along the selective filter, herein we design a system of biomimic two-dimensional (2D) ionic transport channels based on a graphene oxide (GO) membrane, where the ionic imidazole group tunes the appropriate physical confinement of 2D ionic transport channels to mimic the confined cavity structures of the biological selectivity filter, and the ionic sulfonic group creates a favorable chemical environment of 2D ionic transport channels to mimic the affinitive binding sites of the biological selectivity filter.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2019
Ultrathin-film composite membranes comprising an ultrathin polymeric active layer have been extensively explored in gas separation applications benefiting from their extraordinary permeation flux for high-throughput separation. However, the practical realization of an ultrathin active layer in liquid separations is still impeded by the trade-off effect between the membrane thickness (permeation flux) and structural stability (separation factor). Herein, we report a general multiple and alternate spin-coating strategy, collaborating with the interface-decoration layer of copper hydroxide nanofibers (CHNs), to obtain ultrathin and robust polymer-based membranes for high-performance liquid separations.
View Article and Find Full Text PDFIon transport is crucial for biological systems and membrane-based technology. Atomic-thick two-dimensional materials, especially graphene oxide (GO), have emerged as ideal building blocks for developing synthetic membranes for ion transport. However, the exclusion of small ions in a pressured filtration process remains a challenge for GO membranes.
View Article and Find Full Text PDFLignin-based cations introduced into graphene oxide (GO) have been found to bring about stabilization of the nanostructure and the active sites and to give rise to various interactions for subsequent modification with polyelectrolyte and nanospacers, with a view to precisely controlling the nanochannels of the GO-based membranes. The resulting membranes exhibited excellent performance in biofuel dehydration with water flux of 4000-6000 g m h , which exceeds that of the state-of-the-art polymeric and GO-based membranes.
View Article and Find Full Text PDF