The development of aqueous zinc metal batteries (AZMBs) is hampered by dendrites and side reactions induced by reactive HO. In this study, a hydrated eutectic electrolyte with restrictive water consisting of zinc trifluoromethanesulfonate (Zn(OTf)), 1,3-propanediol (PDO), and water is developed to improve the stability of the anode/electrolyte interface in AZMBs via the formation of a water-deficient interface. Additionally, PDO participates in the Zn solvation structure and inhibits the movement of water molecules.
View Article and Find Full Text PDFStreptococcus pyogenes (Sp) Cas9 has been widely utilized to edit genomes across diverse species. To achieve high efficiency and specificity as a gene-editing enzyme, Sp Cas9 undergoes a series of sequential conformational changes during substrate binding and catalysis. Here, we employed single-molecule FRET techniques to investigate the effect of different KCl concentrations on conformational dynamics of Sp Cas9 in the presence or the absence of a single-guide RNA (sgRNA).
View Article and Find Full Text PDFThis systematic review aimed to explore comprehensive evidence on the efficacy of the 3D-printed ankle-foot orthoses (AFOs) on gait parameters in individuals with neuromuscular and/or musculoskeletal ankle impairments. Electronic databases including PubMed, Scopus, Web of Science, Embase, ProQuest, Cochrane, and EBSCOhost were searched from inception to August 2023. Ten studies that had participants with ankle impairments, as a result of stroke, cerebral palsy, mechanical trauma, muscle weakness, or Charcot-Marie-Tooth disease, investigated the immediate effects of the 3D-printed AFOs on gait parameters were included.
View Article and Find Full Text PDFIn mammalian cells, DNA ligase 1 (LIG1) functions as the primary DNA ligase in both genomic replication and single-strand break repair. Several reported mutations in human LIG1, including R305Q, R641L, and R771W, cause LIG1 syndrome, a primary immunodeficiency. While the R641L and R771W mutations, respectively located in the nucleotidyl transferase and oligonucleotide binding domains, have been biochemically characterized and shown to reduce catalytic efficiency, the recently reported R305Q mutation within the DNA binding domain (DBD) remains mechanistically unexplored.
View Article and Find Full Text PDFIndividuals with neuromuscular pathologies are often prescribed an ankle-foot orthosis (AFO) to improve their gait mechanics by decreasing pathological movements of the ankle and lower limb. AFOs can resist or assist excessive or absent muscular forces that lead to tripping, instability, and slow inefficient gait. However, selecting the appropriate AFO with mechanical characteristics, which limit pathological ankle motion in certain phases of the gait cycle while facilitating effective ankle movement during other phases, requires careful clinical decision-making.
View Article and Find Full Text PDFRationale: This study developed a method for the rapid classification and identification of the chemical composition of Qingyan dropping pills (QDP) to provide the theoretical basis and data foundation for further in-depth research on the pharmacological substance basis of the formula and the selection of quality control indexes.
Methods: Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and data postprocessing technology were used to analyze the chemical composition of QDP. The fragmentation information on possible characteristic fragments and related neutral losses was summarized based on the literature and was compared with the MS data obtained from the assay, and thus a rapid classification and identification of chemical components in QDP could be achieved.
The analysis of the genetic diversity and historical dynamics of endemic endangered goose breeds structure has attracted great interest. Although various aspects of the goose breed structure have been elucidated, there is still insufficient research on the genetic basis of endemic endangered Chinese goose breeds. In this study, we collected blood samples from Lingxiang White (LX), Yan (YE), Yangjiang (YJ), Wuzong (WZ), Xupu (XP), and Baizi (BZ) geese () and used Sanger sequencing to determine the partial sequence of the cytochrome b () gene in a total of 180 geese.
View Article and Find Full Text PDFThis study aimed to compare the ground reaction forces (GRFs) and spatio-temporal parameters as well as their asymmetry ratios in gait between individuals wearing a transfemoral prosthetic simulator (TFSim) and individuals with unilateral transfemoral amputation (TFAmp) across a range of walking speeds (2.0-5.5 km h).
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
April 2024
The primary goal of rehabilitation for individuals with lower limb amputation, particularly those with unilateral transfemoral amputation (uTFA), is to restore their ability to walk independently. Effective control of the center of pressure (COP) during gait is vital for maintaining balance and stability, yet it poses a significant challenge for individuals with uTFA. This study aims to study the COP during gait in individuals with uTFA and elucidate their unique compensatory strategies.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
October 2023
Understanding the lower-limb coordination of individuals with unilateral transfemoral amputation (uTFA) while walking is essential to understand their gait mechanisms. Continuous relative phase (CRP) analysis provides insights into gait coordination patterns of the neuromusculoskeletal system based on movement kinematics. Fourteen individuals with uTFA and their age-matched non-disabled individuals participated in this study.
View Article and Find Full Text PDFRetinal layer thickness is an important bio-marker for people with multiple sclerosis (PwMS). In clinical practice, retinal layer thickness changes in optical coherence tomography (OCT) are widely used for monitoring multiple sclerosis (MS) progression. Recent developments in automated retinal layer segmentation algorithms allow cohort-level retina thinning to be observed in a large study of PwMS.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
March 2023
In the last decade, convolutional neural networks (ConvNets) have been a major focus of research in medical image analysis. However, the performances of ConvNets may be limited by a lack of explicit consideration of the long-range spatial relationships in an image. Recently, Vision Transformer architectures have been proposed to address the shortcomings of ConvNets and have produced state-of-the-art performances in many medical imaging applications.
View Article and Find Full Text PDFIEEE Trans Med Imaging
December 2022
Optical coherence tomography angiography (OCTA) is an imaging modality that can be used for analyzing retinal vasculature. Quantitative assessment of en face OCTA images requires accurate segmentation of the capillaries. Using deep learning approaches for this task faces two major challenges.
View Article and Find Full Text PDFConformational dynamics play a crucial role in protein functions. A molecular-level understanding of the conformational transition dynamics of proteins is fundamental for studying protein functions. Here, we report a study of real-time conformational dynamic interaction between calcium-activated calmodulin (CaM) and C28W peptide using single-molecule fluorescence resonance energy transfer (FRET) spectroscopy and imaging.
View Article and Find Full Text PDFMechanisms that regulate nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions and is activated by calmodulin (CaM) binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two NOS electron transfer domains in an FRET dye-labeled endothelial NOS reductase domain (eNOSr) and to understand how CaM affects the dynamics to regulate catalysis by shaping the spatial and temporal conformational behaviors of eNOSr.
View Article and Find Full Text PDFIn magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to site, which impedes consistent measurements in automatic analyses. In this paper, we propose an unsupervised MR image harmonization approach, CALAMITI (Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration), which aims to alleviate contrast variations in multi-site MR imaging. Designed using information bottleneck theory, CALAMITI learns a globally disentangled latent space containing both anatomical and contrast information, which permits harmonization.
View Article and Find Full Text PDFDeep neural networks have been successfully applied to medical image analysis tasks like segmentation and synthesis. However, even if a network is trained on a large dataset from the source domain, its performance on unseen test domains is not guaranteed. The performance drop on data obtained differently from the network's training data is a major problem (known as domain shift) in deploying deep learning in clinical practice.
View Article and Find Full Text PDFBackground: A limited number of studies have investigated the presence of ongoing disease activity independent of clinical relapses in neuromyelitis optica spectrum disorder (NMOSD), and data are conflicting. The objective of our study was to examine whether patients with aquaporin-4 (AQP4)-IgG seropositive NMOSD exhibit progressive retinal neuroaxonal loss, independently of optic neuritis (ON) attacks.
Methods: In this single-center, longitudinal study, 32 AQP4-IgG+ NMOSD patients and 48 healthy controls (HC) were followed with serial spectral-domain optical coherence tomography and visual acuity (VA) assessments.
Background: Prior studies have suggested that subclinical retinal abnormalities may be present in aquaporin-4 immunoglobulin G (AQP4-IgG) seropositive neuromyelitis optica spectrum disorder (NMOSD), in the absence of a clinical history of optic neuritis (ON).
Objective: Our aim was to compare retinal layer thicknesses at the fovea and surrounding macula between AQP4-IgG+ NMOSD eyes without a history of ON (AQP4-nonON) and healthy controls (HC).
Methods: In this single-center cross-sectional study, 83 AQP4-nonON and 154 HC eyes were studied with spectral-domain optical coherence tomography (OCT).
Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer resolution which has been widely used for scanning the retina. Retinal layers are important biomarkers for many diseases. Accurate automated algorithms for segmenting smooth continuous layer surfaces with correct hierarchy (topology) are important for automated retinal thickness and surface shape analysis.
View Article and Find Full Text PDFThe cerebellum plays a central role in sensory input, voluntary motor action, and many neuropsychological functions and is involved in many brain diseases and neurological disorders. Cerebellar parcellation from magnetic resonance images provides a way to study regional cerebellar atrophy and also provides an anatomical map for functional imaging. In a recent comparison, a multi-atlas approach proved to be superior to other parcellation methods including some based on convolutional neural networks (CNNs) which have a considerable speed advantage.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
October 2019
A major goal of analyzing retinal optical coherence tomography (OCT) images is retinal layer segmentation. Accurate automated algorithms for segmenting smooth continuous layer surfaces, with correct hierarchy (topology) are desired for monitoring disease progression. State-of-the-art methods use a trained classifier to label each pixel into background, layer, or surface pixels.
View Article and Find Full Text PDFOptical coherence tomography (OCT) is a noninvasive imaging modality that can be used to obtain depth images of the retina. Patients with multiple sclerosis (MS) have thinning retinal nerve fiber and ganglion cell layers, and approximately 5% of MS patients will develop microcystic macular edema (MME) within the retina. Segmentation of both the retinal layers and MME can provide important information to help monitor MS progression.
View Article and Find Full Text PDF