Background: Mitophagy is an essential factor in mitochondrial quality control and myocardial ischaemia/reperfusion (I/R) injury protection. Because adenosine A2B receptor (A2BR) activation exerts a major role in reducing myocardial I/R injury, the effects of adenosine A2BR activation on cardiac mitophagy under reperfusion conditions were investigated.
Methods: 110 adult Wistar rats (7-10 w), weighing 250-350 grams, were cultured in specific-pathogen-free (SPF) conditions before experiments.
We evaluated the ability of different fluorescent indicators by various analytical instruments, including a laser scanning confocal microscope (LSCM), fluorescence plate reader, and flow cytometer (FCM), to measure the mitochondrial membrane potential (ΔΨm) of cardiac H9c2 cells during oxidative stress-induced mitochondrial injury. The mitochondrial oxygen consumption rate and a transmission electron microscope were used to detect changes in mitochondrial functions and morphology, respectively. Cardiac H9c2 cells were exposed to HO (500, 750, 1000, and 1250 μM) to induce mitochondrial oxidative stress injury, and fluorescent indicators including tetramethyl rhodamine ethyl ester (TMRE), 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide (JC-1), and rhodamine 123 (R123) were used to detect changes in ΔΨm using an LSCM, fluorescence plate reader, and FCM.
View Article and Find Full Text PDF