Publications by authors named "Yueyun Li"

Bismuth tungstate perovskite has been identified as a promising photoelectric material. Nevertheless, the wide band gap of bismuth tungstate leads to short-wavelength absorption of a single material with an attenuated photocurrent response, hindering its realization in biosensing applications. In this study, F, S co-doped BiWO was synthesized by heat treatment and combined with SnS and CdS to form a ternary heterojunction composite.

View Article and Find Full Text PDF

Conductive hydrogels are ideal candidates for developing flexible electronic devices, but they still cannot exhibit excellent strength, satisfactory toughness and high conductivity in sync, greatly limiting their further applications. Inspired by the structure-enhanced properties of natural tissues, we adopted a straightforward and efficient methodology for constructing strong and tough anisotropic short-chain chitosan-based hydrogels with salting-assisted tensile remodeling treatment. The anisotropic hydrogels present anisotropic mechanical and electrochemical performance due to the oriented arrangement of chitosan and P(AM-AA) macromolecular networks.

View Article and Find Full Text PDF

Amyloid-beta protein (Aβ) is a unique biomarker for Alzheimer's disease (AD). The sandwich-type electrochemical immunosensor, one of the key tools for detecting biomarkers, relies on a high-performance signal amplification approach to enhance its sensitivity. Ni/PdH nanodendrites (Ni/PdH NDs) have increased catalytic activity due to their unique interaction with palladium hydride and their nickel-rich surface, tunable shape and high specific surface area.

View Article and Find Full Text PDF
Article Synopsis
  • * The dual-stabilized QDs reduce surface defects, improving ECL emission, while the MOF not only holds more QDs but also boosts ECL signal through a co-reaction mechanism.
  • * Applying this biosensor to detect human epithelial protein 4 (HE4) showed an impressive linear detection range and low limits, highlighting its potential in medical diagnostics and bioimaging.
View Article and Find Full Text PDF

The construction of heterostructure photoelectrodes can enhance the performance of photoelectrochemical (PEC) sensors. However, it is still a critical challenge to achieve efficient transfer of interface carriers. In this paper, we propose a strategy of "photo-modulated interface charge" to design a PEC sensor based on a hollow hexagonal tubular InS/AgInS in situ Z-type heterojunction for the susceptible detection of Programmed Death-ligand 1 (PD-L1).

View Article and Find Full Text PDF

Objectives: To explore the effects of iris xanthin on airway inflammation, airway remodeling, and the high mobility group box 1 protein (HMGB1)/Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway in asthmatic young mice.

Methods: Sixty male BALB/c young mice were randomly assigned into six groups: a blank group, a model group, a dexamethasone group, and low, medium, and high dose groups of iris xanthin, with ten mice per group. Asthma models were induced through intraperitoneal injections of a sensitizing agent [ovalbumin (OVA) 20 μg + aluminum hydroxide gel 2 mg], followed by 4% OVA aerosol inhalation.

View Article and Find Full Text PDF

An electrochemical immunosensor based on the novel high efficiency catalytic cycle amplification strategy for the sensitive detection of cardiac troponin I (cTnI). With its variable valence metal elements and spiny yolk structure, the CuO/CuO@CeO nanohybrid exhibits high speed charge mobility and exceptional electrochemical performance. Notably, fluorite-like cubic crystal CeO shell would undergo redox reaction with CuO core, which successfully ensures the continuous recycling occurrence of "fresh" Cu (II)/Cu (I) and Ce (Ⅳ)/Ce (Ⅲ) pairs at the electrode interface.

View Article and Find Full Text PDF

An interfacial galvanic replacement strategy to controllable synthesize palladium nanoparticles (Pd NPs)-modified NiFe MOF nanocomposite on nickel foam, which served as an efficient sensing platform for quantitative determination of dopamine (DA). Pd NPs grown in situ on the nanosheets of NiFe MOF via self-driven galvanic replacement reaction (GRR) and well uniform distribution was achieved. This method effectively reduced the aggregation of metallic nanoparticles and significantly promoted the electron transfer rate during the electrochemical process, leading to improved electrocatalytic activity for DA oxidation.

View Article and Find Full Text PDF

Graphitic carbon nitride (g-CN) is a promising metal-free photocatalyst; however, its high carrier recombination rate and insufficient redox capacity limit its degradation effect on antibiotics. In order to overcome these shortcomings, the photocatalytic activity is improved by regulating the spin polarization state, constructing the internal electric field, and applying the external piezoelectric field. In this paper, the chlorine-doped and nitrogen-deficient porous carbon nitride composite carbon quantum dots (N-Cl/UPCN@CQD) has been synthesized successfully.

View Article and Find Full Text PDF

Lanthanide metal-organic frameworks (Ln-MOFs) broaden the optical sensing applications of lanthanide ions due to the antenna effect between organic ligands and metals. However, the sensitization ability of the ligand to metal ions is limited, and maximizing the sensitization of the electrochemiluminescence behavior of Eu is still a challenge for the application of Ln-MOFs. Therefore, under the guidance of the "cascade sensitization mechanism" based on the antenna effect sensitizing the electrochemiluminescence of bimetallic Ln-MOFs, we proposed Eu/Tb-MOFs with high luminescence intensity as a signal probe.

View Article and Find Full Text PDF

Nanosheet arrays with stable signal output have become promising photoactive materials for photoelectrochemical (PEC) immunosensors. However, an essential concern is the facile recombination of carriers in one-component nanoarrays, which cannot be readily prevented, ultimately resulting in weak photocurrent signals. In this study, an immunosensor using gold nanoparticle-anchored BiOI/BiS nanosheet arrays (BiOI/BiS/Au) as a signal converter was fabricated for sensitive detection of cardiac troponin I (cTnI).

View Article and Find Full Text PDF

Electrochemical immunosensors have gained considerable attention in detecting human disease markers due to their excellent specificity, high sensitivity, and facile operation. Herein, a rational-designed sandwich-type electrochemical immunosensor is constructed for the sensitive detection of cardiac troponin I (cTnI) using nitrogen-doped carbon nanotubes loaded with gold nanoparticles (Au NPs/N-CNTs) as substrate and highly active mesoporous palladium-nitrogen nanocubes (meso-PdN NCs) as secondary antibody markers. Benefitting from its large specific surface area (638.

View Article and Find Full Text PDF

Copper nanoclusters (Cu NCs) are highly promising nanomaterials in the field of electrochemiluminescence (ECL). Nevertheless, their limited stability and efficiency have impeded their practical applications. Here, we introduced a novel supramolecular anchoring strategy resulting in the creation of exceptionally stable Cu NCs (CET-Cu NCs) with remarkable ECL properties.

View Article and Find Full Text PDF

Heavy metal ions (HMIs) seriously threaten human health even under trace conditions. Therefore, accurate, efficient and simultaneous detection of multiple HMIs is of great significance. Here, a strategy of "co-movement catalysis" based on photo-assisted electrochemical catalysis is proposed by constructing a flexible electrochemical sensor with CoFeO/CNS heterojunction-modified nickel foam as the working electrode for simultaneous detection of HMIs.

View Article and Find Full Text PDF

Inspired by the signal accumulation of circular DNA strand displacement reactions (CD-SDRs) and the in situ generation of silver nanoclusters (AgNCs) from signature template sequences, a dual-signal integrated aptasensor was designed for microcystin-LR (MC-LR) detection. The aptamer was programmed to be included in an enzyme-free CD-SDR, which utilized MC-LR as the primer and outputted the H1/H2 dsDNA in a continuous manner according to the ideal state. Ingeniously, H1/H2 dsDNA was enriched with signature template sequences, allowing in situ generation of AgNCs signal probes.

View Article and Find Full Text PDF

Metal oxide nanomaterials have garnered significant attention in the field of electrochemiluminescence (ECL) sensing due to their efficient, stable, and nontoxic properties. However, the current research on metal oxide nanomaterials has primarily focused on their cathodic luminescence properties, with limited reports on their anodic ECL properties. In this study, we utilized MOF-derived ZrO nanomaterials as luminophores to generate stable anodic ECL signals in the presence of the coreactant tripropylamine (TPrA).

View Article and Find Full Text PDF

A novel multiple amplification strategy for electrochemical immunoassay was developed elaborately. The realization of this strategy is based on the high efficiency catalysis of boron nitrogen double-doped carbon loaded trimetallic PtPdCu mulberry-like nanospheres (PtPdCu/BNC) and the satisfactory conductivity of gold nanoparticles modified with sulfur nitrogen co-doped hollow porous carbon (Au@SNHC). Single crystal anisotropic Pt octahedral seeds were synthesized with sodium citrate as shape-directing agent, and then three metals were grown in situ to prepare the trimetallic PtPdCu mulberry nanospheres, which had excellent utilization of atoms and a significant number of catalytic active centers.

View Article and Find Full Text PDF

An efficient photo-to-electrical signal is pivotal to photoelectrochemical (PEC) biosensors. In our work, a novel PEC biosensor was fabricated for the detection of neuron-specific enolase (NSE) based on a ZnInS/AgCO Z-scheme heterostructure. Due to the overlapping band potentials of the ZnInS and AgCO, the formed Z-scheme heterostructure can promote the charge separation and photoelectric conversion efficiency.

View Article and Find Full Text PDF

In this work, a sensitive signal-on electrochemiluminescence biosensor using liposome-encapsuled 1,1,2,2-tetra(4-carboxylphenyl)ethylene (TPE) as a promising aggregation-induced electrochemiluminescence (AIECL) emitter for detection of biomarkers was developed. Aggregation-induced enhancement occurs internally through the spatial confinement effect and intramolecular self-encapsulation of encapsulating TPE and triethylamine (TEA) molecules in liposome cavities. Peptide sequence WTGWCLNPEESTWGFCTGSF (WF-20) was used to replace the antibody for reducing the steric hindrance of the sensing surface while taking into account the affinity.

View Article and Find Full Text PDF

A sandwich-type electrochemical immunosensor was designed by highly efficient catalytic cycle amplification strategy of CuFeO-Pd for sensitive detection of cardiac troponin I. CuFeO with coupled variable valence metal elements exhibited favorable catalytic performance through bidirectional cycling of Fe/Fe and Cu/Cu redox pairs. More importantly, Cu acted as the intermediate product of the catalytic reaction, promoted the regeneration of Fe and ensured the continuous recycling occurrence of the double redox pairs, and significantly amplified the current signal response.

View Article and Find Full Text PDF

Currently, the construction of heterojunctions as a method to enhance photoelectrochemical (PEC) activity has shown prospective applications in the analytical field. Restricted by carrier separation at the interface, developing a heterojunction sensing platform with high sensitivity remains challenging. Here, a double-photoelectrode PEC sensing platform was fabricated based on an antenna-like strategy by integrating MIL-68(In)-NH, a p-type metal-organic framework (MOF) photocatalyst, as a photocathode with the type-II heterojunction of CdSe/MgInS as a photoanode synchronously.

View Article and Find Full Text PDF

In humans and animals, exposure to changes in internal or external environments causes acute stress, which changes sleep and enhances neurochemical, neuroendocrine, and sympathetic activities. Repeated stress responses play an essential role in the pathogenesis of psychiatric diseases and sleep disorders. However, the underlying mechanism of sleep changes and anxiety disorders in response to acute stress is not well established.

View Article and Find Full Text PDF

In this work, a label-free electrochemical immunosensor based on popcorn-shaped PtCoCu nanoparticles supported on N- and B-codoped reduced graphene oxide (PtCoCu PNPs/NB-rGO) was constructed to sensitively detect concentration level of β-Amyloid oligomers (Aβ). The PtCoCu PNPs exhibits excellent catalytic ability due to its popcorn structure which improves the specific surface area and porosity, resulting in more active sites being exposed and fast transport paths for ion/electron. NB-rGO with large surface area and unique pleated structure could disperse PtCoCu PNPs through electrostatic adsorption and formation of d-p dative bonds between the metal ion and pyridinic N of NB-rGO.

View Article and Find Full Text PDF