Publications by authors named "Yueyun Hong"

Glycerol-3-phosphate acyltransferase GPAT9 catalyzes the first acylation of glycerol-3-phosphate (G3P), a committed step of glycerolipid synthesis in . The role of in remains to be elucidated. Here, we identified four orthologs of GPAT9 and found that BnaGPAT9 encoded by BnaC01T0014600WE is a predominant isoform and promotes seed oil accumulation and eukaryotic galactolipid synthesis in .

View Article and Find Full Text PDF
Article Synopsis
  • Phosphorus is crucial for plant growth, with a significant portion used to create membrane phospholipids, and the study focuses on the role of NON-SPECIFIC PHOSPHOLIPASE C4 (NPC4) in rapeseed (Brassica napus).
  • Altering levels of NPC4 affects seed production; plants lacking NPC4 showed more phospholipids and less growth, while those overexpressing it had lower phospholipid levels and better growth and seed yield.
  • NPC4 is shown to break down specific lipids to release phosphate, which enhances growth in phosphate-poor conditions, and impacts the expression of genes related to lipid metabolism and phosphate transport in the plants.
View Article and Find Full Text PDF

Phosphatidic acid (PA) is an important signal molecule in various biological processes including osmotic stress. Lysophosphatidic acid acyltransferase (LPAT) acylates the sn-2 position of the glycerol backbone of lysophosphatidic acid (LPA) to produce PA. The role of LPAT2 and its PA in osmotic stress response remains elusive in plants.

View Article and Find Full Text PDF

Cell membranes are the initial site of stimulus perception from environment and phospholipids are the basic and important components of cell membranes. Phospholipases hydrolyze membrane lipids to generate various cellular mediators. These phospholipase-derived products, such as diacylglycerol, phosphatidic acid, inositol phosphates, lysophopsholipids, and free fatty acids, act as second messengers, playing vital roles in signal transduction during plant growth, development, and stress responses.

View Article and Find Full Text PDF
Article Synopsis
  • Phospholipase D (PLD) generates phosphatidic acid (PA), which is important for cellular functions, and is shown to impact gibberellin (GA) sensitivity in rice.
  • Knockout (KO) of PLDα6 results in reduced GA sensitivity, but PA can restore normal GA responses by binding to the GA receptor GID1.
  • Key amino acids in GID1 are necessary for PA binding and its movement into the nucleus, and without PLDα6, GID1 cannot effectively localize to the nucleus or degrade the DELLA protein SLR1, indicating a positive regulatory role for PLDα6 and PA in GA signaling.
View Article and Find Full Text PDF

Phosphate is a vital macronutrient for plant growth, and its availability in soil is critical for agricultural sustainability and productivity. A substantial amount of cellular phosphate is used to synthesize phospholipids for cell membranes. Here, we identify a key enzyme, nonspecific phospholipase C4 (NPC4) that is involved in phosphosphingolipid hydrolysis and remodeling in Arabidopsis during phosphate starvation.

View Article and Find Full Text PDF

Non-specific phospholipase C (NPC) is involved in plant growth, development and stress responses. To elucidate the mechanism by which NPCs mediate cellular functions, here we show that NPC4 is S-acylated at the C terminus and that acylation determines its plasma membrane (PM) association and function. The acylation of NPC4 was detected using NPC4 isolated from Arabidopsis and reconstituted in vitro.

View Article and Find Full Text PDF

Plastid-localized glycerol-3-phosphate acyltransferase (ATS1) catalyzes the first-step reaction in glycerolipid assembly through transferring an acyl moiety to glycerol-3-phosphate (G3P) to generate lysophosphatidic acid (LPA), an intermediate in lipid metabolism. The effect of ATS1 overexpression on glycerolipid metabolism and growth remained to be elucidated in plants, particularly oil crop plants. Here, we found that overexpression of from enhanced plant growth and prokaryotic glycerolipid biosynthesis.

View Article and Find Full Text PDF

Cyclic GMP (cGMP) is an important regulator in eukaryotes, and cGMP-dependent protein kinase (PKG) plays a key role in perceiving cellular cGMP in diverse physiological processes in animals. However, the molecular identity, property, and function of PKG in plants remain elusive. In this study, we have identified PKG from plants and characterized its role in mediating the gibberellin (GA) response in rice ().

View Article and Find Full Text PDF

WAX INDUCER1/SHINE1 (WIN1) belongs to the AP2/EREBP transcription factor family and plays an important role in wax and cutin accumulation in plants. Here we show that BnWIN1 from (Bn) has dual functions in wax accumulation and oil synthesis. Overexpression (OE) of led to enhanced wax accumulation and promoted growth without adverse effects on oil synthesis under salt stress conditions.

View Article and Find Full Text PDF

Vegetable oil is an essential constituent of the human diet and renewable raw material for industrial applications. Enhancing oil production by increasing seed oil content in oil crops is the most viable, environmentally friendly, and sustainable approach to meet the continuous demand for the supply of vegetable oil globally. An in-depth understanding of the gene networks involved in oil biosynthesis during seed development is a prerequisite for breeding high-oil-content varieties.

View Article and Find Full Text PDF

Sulfoquinovosyltransferase 2 (SQD2) catalyses the final step in the sulfoquinovosyldiacylglycerol (SQDG) biosynthetic pathway. It is involved in the phosphate starvation response. Here, we show that rice SQD2.

View Article and Find Full Text PDF

Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA), and both DAG and PA are lipid mediators in the cell. Here we show that DGK1 in rice (Oryza sativa) plays important roles in root growth and development. Two independent OsDGK1-knockout (dgk1) lines exhibited a higher density of lateral roots (LRs) and thinner seminal roots (SRs), whereas OsDGK1-overexpressing plants displayed a lower LR density and thicker SRs than wild-type (WT) plants.

View Article and Find Full Text PDF

Phosphatidylinositol-specific phospholipase C (PI-PLC) is involved in stress signalling but its signalling function remains largely unknown in crop plants. Here, we report that the PI-PLC4 from rice (Oryza sativa cv), OsPLC4, plays a positive role in osmotic stress response. Two independent knockout mutants, plc4-1 and plc4-2, exhibited decreased seedling growth and survival rate whereas overexpression of OsPLC4 improved survival rate under high salinity and water deficiency, compared with wild type (WT).

View Article and Find Full Text PDF

Cytidinediphosphate diacylglycerol synthase (CDS) uses phosphatidic acid (PA) and cytidinetriphosphate to produce cytidinediphosphate-diacylglycerol, an intermediate for phosphatidylglycerol (PG) and phosphatidylinositol (PI) synthesis. This study shows that CDS5, one of the five CDSs of the Oryza sativa (rice) genome, has multifaceted effects on plant growth and stress responses. The loss of CDS5 resulted in a decrease in PG and PI levels, defective thylakoid membranes, pale leaves in seedlings and growth retardation.

View Article and Find Full Text PDF

Seed setting is an important trait that contributes to seed yield and relies greatly on starch accumulation. In this study, a sulfoquinovosyl transferase-like protein, designated as SQD2.2 involved in seed setting and flavonoid accumulation, was identified and characterized in rice.

View Article and Find Full Text PDF

Ribosomal protein S6 kinase (S6K) functions as a key component in the target of rapamycin (TOR) pathway involved in multiple processes in eukaryotes. The role and regulation of TOR-S6K in lipid metabolism remained unknown in plants. Here we provide genetic and pharmacological evidence that TOR-Raptor2-S6K1 is important for thylakoid galactolipid biosynthesis and thylakoid grana modeling in rice (Oryza sativa L.

View Article and Find Full Text PDF

Phospholipases D (PLD) and C (PLC) hydrolyze the phosphodiesteric linkages of the head group of membrane phospholipids. PLDs and PLCs in plants occur in different forms: the calcium-dependent phospholipid binding domain-containing PLDs (C2-PLDs), the plekstrin homology and phox homology domain-containing PLDs (PX/PH-PLDs), phosphoinositide-specific PLC (PI-PLC), and non-specific PLC (NPC). They differ in structures, substrate selectivities, cofactor requirements, and/or reaction conditions.

View Article and Find Full Text PDF

Wrinkled1 (WRI1) belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition.

View Article and Find Full Text PDF

Patatin-related phospholipase A (pPLA) hydrolyses glycerolipids to produce fatty acids and lysoglycerolipids. The Oryza sativa genome has 21 putative pPLAs that are grouped into five subfamilies. Overexpression of OspPLAIIIα resulted in a dwarf phenotype with decreased length of rice stems, roots, leaves, seeds, panicles, and seeds, whereas OspPLAIIIα-knockout plants had longer panicles and seeds.

View Article and Find Full Text PDF

Phospholipase D (PLD), which hydrolyses phospholipids to produce phosphatidic acid, has been implicated in plant response to macronutrient availability in Arabidopsis. This study investigated the effect of increased PLDε expression on nitrogen utilization in Brassica napus to explore the application of PLDε manipulation to crop improvement. In addition, changes in membrane lipid species in response to nitrogen availability were determined in the oil seed crop.

View Article and Find Full Text PDF

The activation of phospholipase Dα1 (PLDα1) produces lipid messenger phosphatidic acid and promotes stomatal closure in Arabidopsis. To explore the use of the PLDα1-mediated signalling towards decreasing water loss in crop plants, we introduced Arabidopsis PLDα1 under the control of a guard cell-specific promoter AtKatIpro into two canola (Brassica napus) cultivars. Multiple AtKatIpro ::PLDα1 lines in each cultivar displayed decreased water loss and improved biomass accumulation under hyperosmotic stress conditions, including drought and high salinity.

View Article and Find Full Text PDF

The patatin-related phospholipase A (pPLA) hydrolyzes membrane glycerolipids to produce monoacyl compounds and free fatty acids. Phospholipids are cleaved by pPLAIIα at the sn-1 and sn-2 positions, and galactolipids, including those containing oxophytodienoic acids, can also serve as substrates. Ablation of pPLAIIα decreased lysophosphatidylcholine and lysophosphatidylethanolamine levels, but increased free linolenic acid.

View Article and Find Full Text PDF

The activity of phospholipase D (PLD) in plants increases under different hyperosmotic stresses, such as dehydration, drought, and salinity. Recent results begin to shed light onto the involvement of PLD in response to water deficits and salinity. Different PLDs have unique and overlapping functions in these responses.

View Article and Find Full Text PDF