Publications by authors named "Yueyue Pan"

Rapid and accurate diagnosis of cardiovascular diseases (CVDs) at the earliest stage is of paramount importance to improve the treatment outcomes and avoid irreversible damage to a patient's cardiovascular system. Microfluidic paper-based devices (μPADs) represent a promising platform for rapid CVD diagnosis at the point of care (POC). This paper presents an electrochemical μPAD (E-μPAD) with an all-in-one origami design for rapid and POC testing of cardiac protein markers in whole blood.

View Article and Find Full Text PDF

To obtain industrialized poly(ethylene terephthalate) (PET) composites with highly efficient flame retardancy, a phosphorus-nitrogen (P-N) containing hyperbranched flame retardant additive was synthesized by 9,10-dihydro-9-oxa-10-phospho-phenanthrene-butyric acid (DDP) and tris(2-hydroxyethyl) isocyanurate (THEIC) through high temperature esterification known as hyperbranched DDP-THEIC (hbDT). The chemical structure of the synthesized hbDT was determined by FTIR, H NMR, C NMR, and GPC, etc. Subsequently, hbDT/PET composites were prepared by co-blending, and the effects of hbDT on the thermal stability, flame retardancy, combustion performance, and thermal degradation behavior of PET were explored to deeply analyze its flame retardant mechanism.

View Article and Find Full Text PDF

Low-cost diagnostic tools for point-of-care immunoassays, such as the paper-based enzyme-linked immunoassay (ELISA), have become increasingly important, especially so in the recent COVID-19 pandemic. ELISA is the gold-standard antibody/antigen sensing method. This paper reports an easy-to-fabricate nitrocellulose (NC) paper plate, coupled with a desktop scanner for ELISA, which provides a higher protein immobilization efficiency than the conventional cellulose paper-based ELISA platforms.

View Article and Find Full Text PDF

The COVID-19 pandemic has resulted in a worldwide health crisis. Rapid diagnosis, new therapeutics and effective vaccines will all be required to stop the spread of COVID-19. Quantitative evaluation of serum antibody levels against the SARS-CoV-2 virus provides a means of monitoring a patient's immune response to a natural viral infection or vaccination, as well as evidence of a prior infection.

View Article and Find Full Text PDF

The rectification of ion transport through biological ion channels has attracted much attention and inspired the thriving invention and applications of ionic diodes. However, the development of high-performance ionic diodes is still challenging, and the working mechanisms of ionic diodes constructed by 1D ionic nanochannels have not been fully understood. This work reports the systematic investigation of the design and mechanism of a new type of ionic diode constructed from horizontally aligned multi-walled carbon nanotubes (MWCNTs) with oppositely charged polyelectrolytes decorated at their two entrances.

View Article and Find Full Text PDF

Mechanically deforming biological cells through microfluidic constrictions is a recently introduced technique for the intracellular delivery of macromolecules possibly through transient membrane pores induced in the process. The technique is attractive for research and clinical applications mainly because it is simple, fast, and effective while being free of adverse effects often associated with well-known techniques that rely on field- or vector-based delivery. In this nascent approach, an utmost and crucial role is played by the constriction, often in rectangular profile, and it squeezes cells only in one dimension.

View Article and Find Full Text PDF

Cubic Au-AgCdS core-shell nanostructures were synthesized through cation exchange method assisted by tributylphosphine (TBP) as a phase-transfer agent. Among intermediate products, Au-Ag core-shell nanocubes exhibited many high-order plasmon resonance modes related to the special cubic shape, and these plasmon bands red-shifted along with the increasing of particle size. The plasmon band of Au core first red-shifted and broadened at the step of Au-Ag₂S and then blue-shifted and narrowed at the step of Au-AgCdS.

View Article and Find Full Text PDF