The synthesis of ammonia through photocatalysis or photoelectrochemistry (PEC) and nitrogen reduction reaction (NRR) has become one of the recent research hotspots in the field, where the catalyzed materials and strategies are critical for the NRR. Herein, a Ni-doped MoS/Si nanowires (Ni-MoS/Si NWs) photocathode is prepared, where the Si NWs are formed on the surface of a Si slice by the metal-assisted chemical etching method, and the hydrothermally synthesized Ni-MoS nanosheets are then cast-coated on the Si NWs electrode. Porous water with high solubility of N is prepared by treating a hydrophobic porous coordination polymer with hydrophilic bovine serum albumin for subsequent aqueous dispersing.
View Article and Find Full Text PDFA CdS/AuNPs/NiO Z-scheme heterojunction was prepared on a fluorine-doped tin oxide (FTO) electrode by hydrothermal synthesis of NiO on FTO, electrodeposition of AuNPs on NiO/FTO electrode and then cast-coating of CdS quantum dots. The CdS/AuNPs/NiO/FTO electrode gave a notably increased photocurrent versus NiO/FTO, CdS/FTO, AuNPs/NiO/FTO, CdS/AuNPs/FTO and CdS/NiO/FTO electrodes. The CdS/AuNPs/NiO/FTO electrode was further cast-coated with chitosan to immobilize d-mannose by Schiff base reaction, and concanavalin A (ConA) and then horseradish peroxidase (HRP) were captured on the electrode surface by lectin-sugar binding.
View Article and Find Full Text PDFThe photoelectrochemical immunoassay of glycogen phosphorylase BB (GPBB) was studied. A methyl orange/TiO nanorod heterojunction was constructed on a fluorine-doped tin oxide electrode by hydrothermal synthesis, calcination, and chemical adsorption. A sandwich immune structure consisting of GPBB as the first antibody, GPBB, and a CdS@mesoporous silica-ascorbic acid (AA)-GPBB as secondary antibody composite was constructed on each of the selected well surfaces of a 96-well microplate.
View Article and Find Full Text PDFThe potential distribution at the electrode interface is a core factor in electrochemistry, and it is usually treated by the classic Gouy-Chapman-Stern (G-C-S) model. Yet the G-C-S model is not applicable to nanosized particles collision electrochemistry as it describes steady-state electrode potential distribution. Additionally, the effect of single nanoparticles (NPs) on potential should not be neglected because the size of a NP is comparable to that of an electrode.
View Article and Find Full Text PDFThe nanoparticle-based electrocatalysts' performance is directly related to their working conditions. In general, a number of nanoparticles are uncontrollably fixed on a millimetre-sized electrode for electrochemical measurements. However, it is hard to reveal the maximum electrocatalytic activity owing to the aggregation and detachment of nanoparticles on the electrode surface.
View Article and Find Full Text PDFUnderstanding the photoinduced electron-transfer process is of paramount importance for realizing efficient solar energy conversion. It is rather difficult to clarify the link between the specific properties and the photoelectrochemical performance of an individual component in an ensemble system because data are usually presented as averages because of interplay of the heterogeneity of the bulk system. Here, we report a step-by-step protocol to fabricate an ultrasensitive photoelectrochemical platform for real-time detection of the intrinsic photoelectrochemical behaviors of a single entity with picoampere and sub-millisecond sensitivity.
View Article and Find Full Text PDFWe reported a novel method to real-time monitor the redox behaviors of single Ag nanoparticles (AgNPs) at a Au ultramicroelectrode between oxidizing and reducing pulse potentials using the nanocollision electrochemical method. At fast pulse potentials, the instantaneous anodic-cathodic current transients of a single AgNP were observed for the electrooxidation of AgNP, followed by the electroreduction of the newborn silver oxide (AgO) NP in alkaline media via switching of redox potentials; however, only anodic oxidation signals of individual AgNPs were observed in neutral solution. Through this study, we have revealed the substantial different dynamic nanocollision electrochemical behaviors of single AgNPs on the electrode surface in various media.
View Article and Find Full Text PDFQuantifying the photoinduced electron transfer properties of a single entity is of paramount importance for clarifying the link between the photoelectrochemical performance and the specific properties of an individual. Here, we successfully monitored the photoelectrochemical behavior of a single dye-sensitized ZnO entity on a Au ultramicroelectrode with different TiO film thicknesses. Due to a trap-limited electron diffusion in TiO film, a sub-millisecond photocurrent transient was observed for an individual N719@ZnO associated with single-particle photocatalytic water splitting.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2018
An ultrasensitive photoelectrochemical method for achieving real-time detection of single nanoparticle collision events is presented. Using a micrometer-thick nanoparticulate TiO -filmed Au ultra-microelectrode (TiO @Au UME), a sub-millisecond photocurrent transient was observed for an individual N719-tagged TiO (N719@TiO ) nanoparticle and is due to the instantaneous collision process. Owing to a trap-limited electron diffusion process as the rate-limiting step, a random three-dimensional diffusion model was developed to simulate electron transport dynamics in TiO film.
View Article and Find Full Text PDFSingle nanoparticle (NP) electrochemical measurements are widely described, both theoretically and experimentally, as they enable visualization of the electrochemical signal of a single NP that is masked in ensemble measurements. However, investigating the behavior of individual NPs using electrochemical signals remains a significant challenge. Here we report experiments and simulations demonstrating that multiple distinct motion trajectories could be discerned from time-resolved current traces by dynamic Monte Carlo simulations.
View Article and Find Full Text PDF