Publications by authors named "Yuewan Luo"

Article Synopsis
  • Scientists found a molecule called NR4A1 that helps cancer cells survive in a protective environment.
  • They created a special drug called NR-V04 that can remove NR4A1 from cells quickly and safely, making it easier for the body's immune system to fight cancer.
  • Tests showed that NR-V04 not only shrinks tumors but also helps important immune cells become stronger, making it a promising treatment for cancers like melanoma.
View Article and Find Full Text PDF

An effective cancer therapy requires both killing cancer cells and targeting tumor-promoting pathways or cell populations within the tumor microenvironment (TME). We purposely search for molecules that are critical for multiple tumor-promoting cell types and identified nuclear receptor subfamily 4 group A member 1 (NR4A1) as one such molecule. NR4A1 has been shown to promote the aggressiveness of cancer cells and maintain the immune suppressive TME.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) play an important role in maintaining immune homeostasis and, within tumors, their upregulation is common and promotes an immunosuppressive microenvironment. Therapeutic strategies that can eliminate Tregs in the tumor (i.e.

View Article and Find Full Text PDF

Aiming to identify immune molecules with a novel function in cancer pathogenesis, we found the cluster of differentiation 177 (CD177), a known neutrophil antigen, to be positively correlated with relapse-free, metastasis-free, or overall survival in breast cancer. In addition, CD177 expression is correlated with good prognosis in several other solid cancers including prostate, cervical, and lung. Focusing on breast cancer, we found that CD177 is expressed in normal breast epithelial cells and is significantly reduced in invasive cancers.

View Article and Find Full Text PDF

A long-standing question in the field of embryogenesis is how the zygotic genome is precisely activated by maternal factors, allowing normal early embryonic development. We have previously shown that N6-methyladenine (6mA) DNA modification is highly dynamic in early Drosophila embryos and forms an epigenetic mark. However, little is known about how 6mA-formed epigenetic information is decoded.

View Article and Find Full Text PDF

In eukaryotic cells, RNA-binding proteins (RBPs) interact with RNAs to form ribonucleoprotein complexes (RNA granules) that have long been thought to regulate RNA fate or activity. Emerging evidence suggests that some RBPs not only bind RNA but also possess enzymatic activity related to ubiquitin regulation, raising important questions of whether these RBP-formed RNA granules regulate ubiquitin signaling and related biological functions. Here, we show that Drosophila Otu binds RNAs and coalesces to membrane-less biomolecular condensates via its intrinsically disordered low-complexity domain, and coalescence represents a functional state for Otu exerting deubiquitinase activity.

View Article and Find Full Text PDF

germ-line stem cells (GSCs) provide an excellent model to study the regulatory mechanisms of stem cells in vivo. () has been demonstrated to be necessary and sufficient to promote GSC and cystoblast differentiation. Despite extensive investigation of its regulation and genetic functions, the biochemical nature of the Bam protein has been unknown.

View Article and Find Full Text PDF

Combination of the low-rankness and sparsity has been successfully used to reconstruct desired dynamic magnetic resonance image (MRI) from highly-undersampled (k, t)-space data. However, nuclear norm, as a convex relaxation of the rank function, can cause the solution deviating from the original solution of low-rank problem. Moreover, equally treating different rank component is not flexible to deal with real applications.

View Article and Find Full Text PDF

DNA N(6)-methyladenine (6mA) modification is commonly found in microbial genomes and plays important functions in regulating numerous biological processes in bacteria. However, whether 6mA occurs and what its potential roles are in higher-eukaryote cells remain unknown. Here, we show that 6mA is present in Drosophila genome and that the 6mA modification is dynamic and is regulated by the Drosophila Tet homolog, DNA 6mA demethylase (DMAD), during embryogenesis.

View Article and Find Full Text PDF