Publications by authors named "Yueting Zheng"

Efficient engineering of T cells to express exogenous tumor-targeting receptors such as chimeric antigen receptors (CARs) or T-cell receptors (TCRs) is a key requirement of effective adoptive cell therapy for cancer. Genome editing technologies, such as CRISPR/Cas9, can further alter the functional characteristics of therapeutic T cells through the knockout of genes of interest while knocking in synthetic receptors that can recognize cancer cells. Performing multiple rounds of gene transfer with precise genome editing, termed multiplexing, remains a key challenge, especially for non-viral delivery platforms.

View Article and Find Full Text PDF

Immune rejection of allogeneic cell therapeutics remains a major problem for immuno-oncology and regenerative medicine. Allogeneic cell products so far have inferior persistence and efficacy when compared with autologous alternatives. Engineering of hypoimmune cells may greatly improve their therapeutic benefit.

View Article and Find Full Text PDF

Beyond its powerful genome-editing capabilities, the CRISPR/Cas system has opened up a new era of molecular diagnostics due to its highly specific base recognition and trans-cleavage activity. However, most CRISPR/Cas detection systems are mainly used to detect nucleic acids of bacteria or viruses, while the application of single nucleotide polymorphism (SNP) detection is limited. The SNPs were investigated by CRISPR/enCas12a and are not limited to the protospacer adjacent motif (PAM) sequence in vitro.

View Article and Find Full Text PDF

Grain length is one of the most important factors in determining wheat yield. Here, a stable QTL for grain length was mapped on chromosome 1B in a F recombinant inbred lines (RIL) population, and the gene TaGL1-B1 encoding carotenoid isomerase was identified in a secondary large population through multiple strategies. The genome-wide association study (GWAS) in 243 wheat accessions revealed that the marker for TaGL1-B1 was the most significant among all chromosomes.

View Article and Find Full Text PDF

Tiller angle is one of the most important agronomic traits and one key factor for wheat ideal plant architecture, which can both increase photosynthetic efficiency and greatly enhance grain yield. Here, a deacetylase HST1-like (TaHST1L) gene controlling wheat tiller angle was identified by the combination of a genome-wide association study (GWAS) and bulked segregant analysis (BSA). Ethyl methane sulfonate (EMS)-mutagenized tetraploid wheat lines with the premature stop codon of TaHST1L exhibited significantly smaller tiller angles than the wild type.

View Article and Find Full Text PDF

Circoviruses are the smallest single-stranded DNA viruses that infect mammalian species, avian species, fish, and insects. The infections of circoviruses are known to be associated with a series of fatal diseases, but the protease of circovirus still remains unknown. In this research, we identified viral capsid protein (Cap) as the protease of porcine circovirus type 2 (PCV2), to our knowledge the first circoviruses protease to be reported.

View Article and Find Full Text PDF

Interferons (IFNs) are cytokines that induce a global change in the cell to establish antiviral immunity. We previously demonstrated that human adenovirus (HAdV) exploits IFN-induced viral repression to persist in infected cells. Although this persistence model has been described, the mechanism behind how persistent HAdV infection is established is not well understood.

View Article and Find Full Text PDF

Interferons (IFNs) are one of the hallmarks of host antiviral immunity. IFNs exert their antiviral activities through the induction of IFN-stimulated genes (ISGs) and antiviral proteins; however, the mechanism by which ISGs inhibit adenovirus (Ad) replication is not clearly understood. IFNs repress Ad immediate early gene expression and, consequently, all subsequent aspects of the viral life cycle.

View Article and Find Full Text PDF

Optical security labels play a significant role in protecting both our wealth and health. However, simultaneously meeting the requirements including low-cost fabrication, easy detection, and high-level security is still challenging for security labels. Here, we design an unclonable anti-counterfeiting system with triple-level security by using the inkjet printing technique, which can be authenticated by naked eyes, a portable microscope, and a fluorescence microscope.

View Article and Find Full Text PDF

Anticounterfeiting techniques based on physical unclonable functions exhibit great potential in security protection of extensive commodities from daily necessities to high-end products. Herein, we propose a facile strategy to fabricate an unclonable super micro fingerprint (SMFP) array by introducing in situ grown perovskite crystals for multilevel anticounterfeiting labels. The unclonable features are formed on the basis of the differential transportation of a microscale perovskite precursor droplet during the inkjet printing process, coupled with random crystallization and Ostwald ripening of perovskite crystals originating from their ion crystal property.

View Article and Find Full Text PDF

Resveratrol is a promising chemical agent that treats multiple aging-related diseases and improves life span. While reactive oxygen species undoubtedly play ubiquitous roles in the aging process and resveratrol has been shown to be an effective antioxidant, the mechanism through which resveratrol acts against oxidative stress remains unknown. Here we show that resveratrol activates SIRT2 to deacetylate Prx1, leading to an increased HO reduction activity and a decreased cellular HO concentration.

View Article and Find Full Text PDF

Reversible N-lysine (N-Lys) acetylation is a dynamic post-translational modification. Genetic incorporation of N-acetyllysine (N-AcK) into the specific site of a protein is a powerful method for producing recombinant protein with acetylation and studying the functional role of protein acetylation. Because of the universal existence of deacetylase such as CobB in vivo, the acetyl group of N-AcK may be removed from recombinant protein.

View Article and Find Full Text PDF

Antigen-independent tonic signaling by chimeric antigen receptors (CARs) can increase differentiation and exhaustion of T cells, limiting their potency. Incorporating 4-1BB costimulation in CARs may enable T cells to resist this functional exhaustion; however, the potential ramifications of tonic 4-1BB signaling in CAR T cells remain unclear. Here, we found that tonic CAR-derived 4-1BB signaling can produce toxicity in T cells via continuous TRAF2-dependent activation of the nuclear factor κB (NF-κB) pathway and augmented FAS-dependent cell death.

View Article and Find Full Text PDF

The Adenovirus (Ad) genome within the capsid is tightly associated with a virus-encoded, histone-like core protein-protein VII. Two other Ad core proteins, V and X/μ, also are located within the virion and are loosely associated with viral DNA. Core protein VII remains associated with the Ad genome during the early phase of infection.

View Article and Find Full Text PDF

Pathogenic Yersinia, including Y. pestis, the agent of plague in humans, and Y. pseudotuberculosis, the related enteric pathogen, deliver virulence effectors into host cells via a prototypical type III secretion system to promote pathogenesis.

View Article and Find Full Text PDF

Interferons (IFNs) are cytokines that have pleiotropic effects and play important roles in innate and adaptive immunity. IFNs have broad antiviral properties and function by different mechanisms. IFNs fail to inhibit wild-type Adenovirus (Ad) replication in established cancer cell lines.

View Article and Find Full Text PDF

The Adenovirus E4-ORF3 protein facilitates virus replication through the relocalization of cellular proteins into nuclear inclusions termed tracks. This sequestration event disrupts antiviral properties associated with target proteins. Relocalization of Mre11-Rad50-Nbs1 proteins prevents the DNA damage response from inhibiting Ad replication.

View Article and Find Full Text PDF

The arginyl-tRNA synthetase (ArgRS) catalyzes the esterification reaction between L-arginine and its cognate tRNA(Arg). Previously reported structures of ArgRS shed considerable light on the tRNA recognition mechanism, while the aspect of amino acid binding in ArgRS remains largely unexplored. Here we report the first crystal structure of E.

View Article and Find Full Text PDF

The encapsidation of adenovirus (Ad) DNA into virus particles depends on cis-acting sequences located at the left end of the viral genome. Repeated DNA sequences in the packaging domain contribute to viral DNA encapsidation and several viral proteins bind to these repeats when analyzed using in vitro DNA-protein binding assays. In this chapter, we describe a chromatin immunoprecipitation (ChIP) approach to study the binding of viral proteins to packaging sequences in vivo.

View Article and Find Full Text PDF

We applied a custom tiled microarray to examine murine gammaherpesvirus 68 (MHV68) polyadenylated transcript expression in a time course of de novo infection of fibroblast cells and following phorbol ester-mediated reactivation from a latently infected B cell line. During de novo infection, all open reading frames (ORFs) were transcribed and clustered into four major temporal groups that were overlapping yet distinct from clusters based on the phorbol ester-stimulated B cell reactivation time course. High-density transcript analysis at 2-h intervals during de novo infection mapped gene boundaries with a 20-nucleotide resolution, including a previously undefined ORF73 transcript and the MHV68 ORF63 homolog of Kaposi's sarcoma-associated herpesvirus vNLRP1.

View Article and Find Full Text PDF

The open reading frame Ha107 of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearNPV) encodes a putative protein of 51 kDa with homologues in a few group II NPVs and a granulovirus. Ha107 was transcribed as polyadenylated transcripts in infected HzAM1 insect cells. The transcripts were initiated at two distinct locations, one upstream of Ha106 (superoxide dismutase gene, sod) and the second upstream of Ha107.

View Article and Find Full Text PDF