Mol Oral Microbiol
October 2024
Introduction: Filifactor alocis is a newly appreciated member of the periodontal community with a strong periodontal disease correlation. Little is known about the survival mechanisms by which F. alocis copes with oxidative stress and establishes the infection within the local inflammatory microenvironment of the periodontal pocket.
View Article and Find Full Text PDFA dysbiotic microbial community whose members have specific/synergistic functions that are modulated by environmental conditions, can disturb homeostasis in the subgingival space leading to destructive inflammation, plays a role in the progression of periodontitis. Filifactor alocis, a gram-positive, anaerobic bacterium, is a newly recognized microbe that shows a strong correlation with periodontal disease. Our previous observations suggested F.
View Article and Find Full Text PDFPorphyromonas gingivalis, the causative agent of adult periodontitis, must gain resistance to frequent oxidative and nitric oxide (NO) stress attacks from immune cells in the periodontal pocket to survive. Previously, we found that, in the wild-type and under NO stress, the expression of PG1237 (CdhR), the gene encoding for a putative LuxR transcriptional regulator previously called community development and hemin regulator (CdhR), was upregulated 7.7-fold, and its adjacent gene PG1236 11.
View Article and Find Full Text PDF, a gram-negative anaerobe, is a leading etiological agent in periodontitis. This infectious pathogen can induce a dysbiotic, proinflammatory state within the oral cavity by disrupting commensal interactions between the host and oral microbiota. It is advantageous for to avoid complete host immunosuppression, as inflammation-induced tissue damage provides essential nutrients necessary for robust bacterial proliferation.
View Article and Find Full Text PDFThe survival/adaptation of Porphyromonas gingivalis to the inflammatory environment of the periodontal pocket requires an ability to overcome oxidative stress. Several functional classes of genes, depending on the severity and duration of the exposure, were induced in P. gingivalis under HO-induced oxidative stress.
View Article and Find Full Text PDFOral Biofilms are one of the most complex and diverse ecosystem developed by successive colonization of more than 600 bacterial taxa. Development starts with the attachment of early colonizers such as species and oral streptococci on the acquired pellicle and tooth enamel. These bacteria not only adhere to tooth surface but also interact with each other and lay foundation for attachment of bridging colonizer such as followed by late colonizers including the red complex species: and -the founders of periodontal disease.
View Article and Find Full Text PDFFilifactor alocis, a previously unrecognized Gram-positive anaerobic rod, is now considered a new emerging pathogen that may play a significant role in periodontal disease. F. alocis' unique characteristics and variations at the molecular level that may be responsible for the functional changes required to mediate the pathogenic process are discussed.
View Article and Find Full Text PDFThe adaptation of Porphyromonas gingivalis to H2O2-induced stress while inducible is modulated by an unknown OxyR-independent mechanism. Previously, we reported that the PG_2212 gene was highly upregulated in P. gingivalis under conditions of prolonged oxidative stress.
View Article and Find Full Text PDFChanges in periodontal status are associated with shifts in the composition of the bacterial community in the periodontal pocket. The relative abundances of several newly recognized microbial species, including Filifactor alocis, as-yet-unculturable organisms, and other fastidious organisms have raised questions on their impact on disease development. We have previously reported that the virulence attributes of F.
View Article and Find Full Text PDFPreviously, we have reported that gingipain activity in Porphyromonas gingivalis, the major causative agent in adult periodontitis, is post-translationally regulated by the unique Vim proteins including VimF, a putative glycosyltransferase. To further characterize VimF, an isogenic mutant defective in this gene in a different P. gingivalis genetic background was evaluated.
View Article and Find Full Text PDFA clear perception of gene essentiality in bacterial pathogens is pivotal for identifying drug targets to combat emergence of new pathogens and antibiotic-resistant bacteria, for synthetic biology, and for understanding the origins of life. We have constructed a comprehensive set of deletion mutants and systematically identified a clearly defined set of essential genes for Streptococcus sanguinis. Our results were confirmed by growing S.
View Article and Find Full Text PDFThe Porphyromonas gingivalis recombinant VimA can interact with the gingipains and several other proteins, including a sialidase. Sialylation can be involved in protein maturation; however, its role in virulence regulation in P. gingivalis is unknown.
View Article and Find Full Text PDFHydrogen peroxide (H(2)O(2)), an important substance produced by many members of the genus Streptococcus, plays important roles in virulence and antagonism within a microbial community such as oral biofilms. The spxB gene, which encodes pyruvate oxidase, is involved in H(2)O(2) production in many streptococcal species. However, knowledge about its regulation and relation with other genes putatively involved in the same pathway is limited.
View Article and Find Full Text PDFThe capacity to fix nitrogen is widely distributed in phyla of Bacteria and Archaea but has long been considered to be absent from the Pseudomonas genus. We report here the complete genome sequencing of nitrogen-fixing root-associated Pseudomonas stutzeri A1501. The genome consists of a single circular chromosome with 4,567,418 bp.
View Article and Find Full Text PDFAn alkaline beta-mannanase was purified to homogeneity from a culture broth of alkaliphilic Bacillus sp. N16-5. The enzyme had optimum activity at pH 9.
View Article and Find Full Text PDFBased on the previous studies on numerical taxonomy and 16S rDNA PCR-RFLP analysis, the moderately halophilic bacteria isolated from Xinjiang Region constituted a new cluster, and the phylogenetic tree was constructed by comparing with the 16S rDNA sequences of the other moderately halophilic bacteria species. In the phylogenetic tree, most of the reference strains were clustered in a group, and the similarity values of 16S rDNA sequence were above 96%. However, AI-3, Alcanivorax borkumensis and Halobacillus litoralis were clustered in another group, and the similarity value of 16S rDNA sequences between AI-3 and Alcanivorax borkumensis was 96%, and that of 16S rDNA sequences between AI-3 and Halobacillus litoralis was 99%.
View Article and Find Full Text PDF