The blockade of programmed death-ligand 1 (PD-L1) pathway has been clinically used in cancer immunotherapy, while its effects on infectious diseases remain elusive. Roles of PD-L1 signaling in the macrophage-mediated innate immune defense against M.tb is unclear.
View Article and Find Full Text PDFThe osteogenic capacities of bone marrow-derived stromal cells (BMSCs) diminish during replicative senescence, and these changes affect the success of therapeutic application of BMSCs. In this study, we sought to explore the molecular mechanisms underlying the osteogenic differentiation capacities that occur during replicative senescence. It is well known that Oct4 is a key transcription factor essential for maintaining differentiation capacities of the stem cells.
View Article and Find Full Text PDFThe tumor suppressor protein p53 is an important player in the regulation of cell senescence, its functions are largely carried out by modulating its downstream genes. Emerging evidence has suggested that senescence and autophagy appear to be regulated by overlapping signaling pathways. Furthermore, autophagy markers have been observed in senescent cells.
View Article and Find Full Text PDFFollowing a limited number of cell divisions, mesenchymal stem cells (MSCs) undergo senescence, and these senescent cells maintain metabolic modification and remain viable for long periods. Autophagy, an intracellular bulk degradation process, provides a survival effect for cells under stress. In this study, the effect of autophagy on senescent MSCs was analyzed.
View Article and Find Full Text PDFHuman papillomavirus (HPV) 16 infection and RASSF1A expression play important roles in tumor development and progression. However, the precise mechanisms underlying their concerted function in the development of reproductive system tumors still remain to be elucidated. In the present study, we showed that HPV16-E6 selectively upregulates RASSF1A expression via degradation of p53, which interacts with the RASSF1A promoter and regulates apoptosis.
View Article and Find Full Text PDFObjective: To investigate the mechanisms underlying the dual effects of estrogen on vascular smooth muscle cells (VSMC).
Methods: MTT assay, ELISA, flow cytometry and Western analysis were used to investigate the effects of 17beta-estradiol (E(2)) on proliferation, apoptosis, cell cycle progression, ERK and p38 activities of subcultured rat VSMC with or without chemical block of MEK or p38 kinases.
Results: E(2)-promoted VSMC proliferation was accompanied with an increased phosphorylation of ERK1/2, which could be blocked by MEK inhibitor U0126; the E(2)-induced VSMC apoptosis, which appeared mainly in the G2/M phase, was related with the activation of p38 and could be blocked by p38 inhibitor SB203580.