JOURNAL/nrgr/04.03/01300535-202506000-00031/figure1/v/2024-08-05T133530Z/r/image-tiff Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles and their fusion with the cellular membrane.
View Article and Find Full Text PDFMicroRNAs (miRNAs) play a significant role in axon regeneration following spinal cord injury. However, the functions of numerous miRNAs in axon regeneration within the central nervous system (CNS) remain largely unexplored. Here, we elucidate the positive role of microRNA-2184 (miR-2184) in axon regeneration within zebrafish Mauthner cells (M-cells).
View Article and Find Full Text PDFMicroRNA (miRNA), functioning as a post-transcriptional regulatory element, plays a significant role in numerous regulatory mechanisms and serves as a crucial intrinsic factor influencing axon regeneration. Prior investigations have elucidated the involvement of miRNA-9 in various processes, however, its specific contribution to axon regeneration in the central nervous system (CNS) remains uncertain. Hence, the zebrafish Mauthner axon regeneration model was employed to manipulate the expression of miRNA-9 in single cells, revealing that upregulation of miRNA-9 facilitated axon regeneration.
View Article and Find Full Text PDFEffective axon regeneration within the central nervous system (CNS) is pivotal for achieving functional recovery following spinal cord injury (SCI). Numerous extrinsic and intrinsic factors exert influences on the axon regeneration. While prior studies have demonstrated crucial involvement of specific members the Rab protein family in axon regeneration in the peripheral nervous system (PNS), the precise function of Rab11 in CNS axon regeneration in vivo remains elusive.
View Article and Find Full Text PDFAxonal transport is crucial for the development and survival of neurons and maintenance of neuronal function. Disruption in this active process causes diverse neurological diseases. Thus, study of the intracellular trafficking as one way to gain the knowledge of the kinetics of axonal transport is essential to understand the mechanisms underlying the neuropathology.
View Article and Find Full Text PDF