Publications by authors named "Yuerong Cai"

Copper (Cu) is essential for plant growth and development. IRON MAN (IMA) is a family of small peptides that can bind both iron (Fe) and Cu ions. It was reported that IMAs mediate Fe homeostasis in Arabidopsis thaliana.

View Article and Find Full Text PDF

Copper (Cu) is one of the most indispensable micronutrients, and proper Cu homeostasis is required for plants to maintain essential cellular functions. Plants activate the Cu uptake system during Cu limitation. Although SPL7 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 7) and CITF1 (Cu-DEFICIENCY INDUCED TRANSCRIPTION FACTOR 1) are two transcription factors in Cu homeostasis, it remains unclear how SPL7 and CITF1 control the Cu uptake system.

View Article and Find Full Text PDF

Iron (Fe) homeostasis is essential for plant growth and development. Many transcription factors (TFs) play pivotal roles in the maintenance of Fe homeostasis. bHLH11 is a negative TF that regulates Fe homeostasis.

View Article and Find Full Text PDF

Although the crosstalk between iron (Fe) and copper (Cu) homeostasis signalling networks exists in plants, the underlined molecular mechanism remains unclear. FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) and four bHLH Ib members (bHLH38, bHLH39, bHLH100 and bHLH101) are the key regulators of Fe homeostasis. Here, we reveal that FIT and bHLH Ib control the up-regulation of Cu-uptake genes (COPT2, FRO4 and FRO5) by Fe deficiency, and Cu is required for improving plant growth under Fe-deficiency conditions.

View Article and Find Full Text PDF

Iron (Fe) deficiency is prevalent in plants grown in neutral or alkaline soil. Plants have evolved sophisticated mechanisms that regulate Fe homeostasis, ensuring survival. In Arabidopsis, FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) is a crucial regulator of Fe-deficiency response.

View Article and Find Full Text PDF

Cd is a non-essential heavy metal that is toxic to both plants and animals. Here, we reveal that the transcription factor bHLH104 positively regulates Cd tolerance in Arabidopsis thaliana. We show that Fe deficiency-responsive genes were induced by Cd treatment, and that their upregulation was suppressed in bhlh104 loss-of-function mutants, but enhanced upon overexpression of bHLH104.

View Article and Find Full Text PDF