Publications by authors named "Yuer Wang"

Point-of-care testing (POCT) is rapid, exhibits highly sensitive performance, can facilitate home self-testing and avoids cross-contamination. Herein, we developed a biosensor that combines Si-OH magnetic bead (MB)-based fast RNA extraction, reverse transcription-loop-mediated isothermal amplification (RT-LAMP), CRISPR-Cas12a, and lateral flow assay (LFA) for rapid detection of SARS-CoV-2 RNA within 1.5 h.

View Article and Find Full Text PDF

Plants produce a staggering array of chemicals that are the basis for organismal function and important human nutrients and medicines. However, it is poorly defined how these compounds evolved and are distributed across the plant kingdom, hindering a systematic view and understanding of plant chemical diversity. Recent advances in plant genome/transcriptome sequencing have provided a well-defined molecular phylogeny of plants, on which the presence of diverse natural products can be mapped to systematically determine their phylogenetic distribution.

View Article and Find Full Text PDF

Early and precise detection and identification of various pathogens are essential for epidemiological monitoring, disease management, and reducing the prevalence of clinical infectious diseases. Traditional pathogen detection techniques, which include mass spectrometry, biochemical tests, molecular testing, and culture-based methods, are limited in application and are time-consuming. Next generation sequencing (NGS) has emerged as an essential technology for identifying pathogens.

View Article and Find Full Text PDF

() is one of the most common clinical pathogens and a typical multi-drug resistant (MDR) bacterium. With the increase of drug-resistant infections, it is urgent to find some new treatment strategies, such as phage therapy. In this paper, we described the different drug resistances of and some basic properties of phages, analyzed the interaction between phages and their hosts, and focused on phage therapies.

View Article and Find Full Text PDF

Bacteria have developed different mechanisms to defend against phages, such as preventing phages from being adsorbed on the surface of host bacteria; through the superinfection exclusion (Sie) block of phage's nucleic acid injection; by restricting modification (R-M) systems, CRISPR-Cas, aborting infection (Abi) and other defense systems to interfere with the replication of phage genes in the host; through the quorum sensing (QS) enhancement of phage's resistant effect. At the same time, phages have also evolved a variety of counter-defense strategies, such as degrading extracellular polymeric substances (EPS) that mask receptors or recognize new receptors, thereby regaining the ability to adsorb host cells; modifying its own genes to prevent the R-M systems from recognizing phage genes or evolving proteins that can inhibit the R-M complex; through the gene mutation itself, building nucleus-like compartments or evolving anti-CRISPR (Acr) proteins to resist CRISPR-Cas systems; and by producing antirepressors or blocking the combination of autoinducers (AIs) and its receptors to suppress the QS. The arms race between bacteria and phages is conducive to the coevolution between bacteria and phages.

View Article and Find Full Text PDF

The shikimate pathway connects the central carbon metabolism with the biosynthesis of aromatic amino acids-l-tyrosine, l-phenylalanine, and l-tryptophan-which play indispensable roles as precursors of numerous aromatic phytochemicals. Despite the importance of the shikimate pathway-derived products for both plant physiology and human society, the regulatory mechanism of the shikimate pathway remains elusive. This review summarizes the recent progress and current understanding on the plant 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHP synthase or DHS) enzymes that catalyze the committed reaction of the shikimate pathway.

View Article and Find Full Text PDF