The zinc-activated channel (ZAC) is an atypical mammalian cys-loop receptor (CLR) that is activated by zinc ions and protons, allowing cations to pass through. The molecular mechanism that ligands use to activate ZAC remains elusive. Here, we present three cryo-electron microscopy reconstructions of human ZAC (hZAC) under different conditions.
View Article and Find Full Text PDFChannels are typically gated by several factors, including voltage, ligand and mechanical force. Most members of the calcium homeostasis modulator (CALHM) protein family, large-pore ATP release channels, exist in different oligomeric states. Dynamic conversions between CALHM1 heptamers and octamers to gate the channel were proposed.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2024
The human Orai1 (hOrai1) channel plays a crucial role in extracellular Ca influx and has emerged as an attractive drug target for various diseases. However, the activated structure of the hOrai1 channel assembly within a lipid bilayer remains unknown. In this study, we expressed and purified the hOrai1 channel covalently linked to two SOAR tandems (HOSS).
View Article and Find Full Text PDFMitochondrial RNA splicing 2 (Mrs2), a eukaryotic CorA ortholog, enables Mg to permeate the inner mitochondrial membrane and plays an important role in mitochondrial metabolic function. However, the mechanism by which Mrs2 permeates Mg remains unclear. Here, we report four cryo-electron microscopy (cryo-EM) reconstructions of Homo sapiens Mrs2 (hMrs2) under various conditions.
View Article and Find Full Text PDFRadiation damage and a low signal-to-noise ratio are the primary factors that limit spatial resolution in coherent diffraction imaging (CDI) of biomaterials using X-ray sources. Introduced here is a clustering algorithm named based on deep learning, and it is applied to obtain accurate and consistent image reconstruction from noisy diffraction patterns of weakly scattering biomaterials. To investigate the impact of X-ray radiation on soft biomaterials, CDI experiments were performed on mitochondria from human embryonic kidney cells using synchrotron radiation.
View Article and Find Full Text PDFCalcium homeostasis modulator 1 (CALHM1) is a voltage- and Ca-gated ATP channel that plays an important role in neuronal signaling. However, as the previously reported CALHM structures are all in the ATP-conducting state, the gating mechanism of ATP permeation is still elusive. Here, we report cryo-EM reconstructions of two Danio rerio CALHM1 heptamers with ordered or flexible long C-terminal helices at resolutions of 3.
View Article and Find Full Text PDFTACAN is an ion channel-like protein that may be involved in sensing mechanical pain. Here, we present the cryo-electron microscopic structure of human TACAN (hTACAN). hTACAN forms a dimer in which each protomer consists of a transmembrane globular domain (TMD) containing six helices and an intracellular domain (ICD) containing two helices.
View Article and Find Full Text PDFATP-binding cassette subfamily B member 7 (ABCB7) is localized in the inner membrane of mitochondria, playing a critical role in iron metabolism. Here, we determined the structure of the nonhydrolyzable ATP analog adenosine-5'-(β-γ-imido) triphosphate (AMP-PNP) bound human ABCB7 at 3.3 Å by single-particle electron cryo-microscopy (cryo-EM).
View Article and Find Full Text PDFTransmembrane bax inhibitor-1 motif containing protein 5 (TMBIM5) is located on the inner membrane of mitochondria and is widely expressed in tissues but less frequently in the intestine and thymus. TMBIM5 affects mitochondrial cristae organization and is associated with Parkinson's disease. Here, we present the first report about expression, purification and the 2D classification projections derived from negatively stained electron micrographs of recombinant H.
View Article and Find Full Text PDFOrai channels belong to the calcium release-activated calcium (CRAC) channel family. Orai channels are responsible for the influx of extracellular Ca that is triggered by Ca depletion from the endoplasmic reticulum (ER); this function is essential for many types of non-excitable cells. Extensive structural and functional studies have advanced the knowledge of the molecular mechanism by which Orai channels are activated.
View Article and Find Full Text PDFThe distinguished properties of nanomaterials promote us to explore whether their intrinsic activities would be beneficial to disease treatment. Furthermore, understanding the molecular mechanism is thereby crucial for biomedical applications. Here, we investigate the therapeutic effects of single-walled carbon nanotubes (SWNTs) in a rat model of binge alcohol-induced neurodegeneration.
View Article and Find Full Text PDFCalcium-sensing receptor (CaSR) is a class C G protein-coupled receptor (GPCR) that plays an important role in calcium homeostasis and parathyroid hormone secretion. Here, we present multiple cryo-electron microscopy structures of full-length CaSR in distinct ligand-bound states. Ligands (Ca and l-tryptophan) bind to the extracellular domain of CaSR and induce large-scale conformational changes, leading to the closure of two heptahelical transmembrane domains (7TMDs) for activation.
View Article and Find Full Text PDFThe BAG proteins are a family of multi-functional co-chaperones. In plants, BAG proteins were found to play roles both in abiotic and biotic stress tolerance. However, the function of Arabidopsis remains largely unknown, whereas is required for plants' defense to pathogens, although it remains unknown whether is involved in plants' tolerance to abiotic stresses.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2021
Biochem Biophys Res Commun
June 2021
Human ATP-binding cassette transporter 8 of subfamily B (hABCB8) is an ABC transporter that located in the inner membrane of mitochondria. The ABCB8 is involved in the maturation of Fe-S and protects the heart from oxidative stress. Here, we present the cryo-EM structure of human ABCB8 binding with AMPPNP in inward-facing conformation with resolution of 4.
View Article and Find Full Text PDFIn Arabidopsis thaliana, mitochondrial-localized heat-shock cognate protein 70-1 (mtHSC70-1) plays an important role in vegetativegrowth. However, whether mtHSC70-1 affects reproductive growth remains unknown. Here, we found that the mtHSC70-1 gene was expressed in the provascular cells of the embryo proper from the early heart stage onward during embryogenesis.
View Article and Find Full Text PDFThe ATP-binding cassette sub-family B member 7 (ABCB7) is a membrane transport protein located on the inner membrane of mitochondria, which could be involved in the transport of heme from the mitochondria to the cytosol. ABCB7 also plays a central role in the maturation of cytosolic iron-sulfur (Fe/S) cluster-containing proteins, and mutations can cause a series of mitochondrial defects. X-linked sideroblastic anemia and ataxia (XLSA-A) is a rare cause of early onset ataxia, which may be overlooked due to the usually mild asymptomatic anemia.
View Article and Find Full Text PDFCalcium homeostasis modulator 1 (CALHM1) is a voltage-gated ATP release channel that plays an important role in neural gustatory signaling and the pathogenesis of Alzheimer's disease. Here, we present a cryo-electron microscopy structure of full-length Ca-free CALHM1 from Danio rerio at an overall resolution of 3.1 Å.
View Article and Find Full Text PDF-Glycosyltransferases (CGTs) catalyze the formation of -glycosidic bonds for the biosynthesis of -glycosides, but the underlying mechanism is unclear. This process improves the solubility and bioavailability of specialized metabolites, which play important roles in plant growth and development and represent rich resources for drug discovery. Here, we performed functional and structural studies of the CGT UGT708C1 from buckwheat ().
View Article and Find Full Text PDFThe acetohydroxyacid synthase (AHAS) holoenzyme catalyzes the first step of branch-chain amino acid biosynthesis and is essential for plants and bacteria. It consists of a regulatory subunit (RSU) and a catalytic subunit (CSU). The allosteric mechanism of the AHAS holoenzyme has remained elusive for decades.
View Article and Find Full Text PDFProtein Expr Purif
September 2020
The S-adenosylmethionine carrier (SAMC) is a membrane transport protein located on the inner membrane of mitochondria that catalyzes the import of S-adenosylmethionine (SAM) into the mitochondrial matrix. SAMC mutations can cause a series of mitochondrial defects, including those affecting RNA stability, protein modification, mitochondrial translation and biosynthesis. Here, we describe the expression, purification and oligomerization of SAMC.
View Article and Find Full Text PDFStriga is a parasitic weed that disperses easily, and its seeds can persist in the soil for many years, presenting long-term threats to food security. If SLs stimulate the seed germination of root parasitic weeds before planting, weeds will wither due to no host. Therefore, it is necessary to determine the mechanism of strigolactone (SL) signaling in Striga to reduce the impacts of this parasitic weed.
View Article and Find Full Text PDFCyclocarya paliurus (Batalin) Iljinsk is a medicinal plant belonging to the Juglandaceae family, and its leaves are used for a traditional sweet herbal tea with bioactivity against obesity and hyperglycaemia in China. It contains various bioactive specialised metabolites, such as flavonoids, triterpenes and their glucosides, while no glycosyltransferases (GTs) have been reported in C. paliurus to date.
View Article and Find Full Text PDFThe Orai channel is characterized by voltage independence, low conductance, and high Ca2+ selectivity and plays an important role in Ca2+ influx through the plasma membrane (PM). How the channel is activated and promotes Ca2+ permeation is not well understood. Here, we report the crystal structure and cryo-electron microscopy (cryo-EM) reconstruction of a Drosophila melanogaster Orai (dOrai) mutant (P288L) channel that is constitutively active according to electrophysiology.
View Article and Find Full Text PDFGlycosylation is a key modification for most molecules including plant natural products, for example, flavonoids and isoflavonoids, and can enhance the bioactivity and bioavailability of the natural products. The crystal structure of plant rhamnosyltransferase UGT89C1 from Arabidopsis thaliana was determined, and the structures of UGT89C1 in complexes with UDP-β-l-rhamnose and acceptor quercetin revealed the detailed interactions between the enzyme and its substrates. Structural and mutational analysis indicated that Asp356, His357, Pro147 and Ile148 are key residues for sugar donor recognition and specificity for UDP-β-l-rhamnose.
View Article and Find Full Text PDF