Publications by authors named "Yueqiao Huang"

NMDA receptors (NMDARs) are ion channels gated by glutamate, the major excitatory neurotransmitter in the central nervous system. Anti-NMDA receptor (anti-NMDAR) encephalitis is an autoimmune disease characterized by the presence of autoantibodies against the NMDAR GluN1 subunit. Here we briefly review current advances in the understanding of the mechanisms underlying the pathogenesis of anti-NMDAR encephalitis.

View Article and Find Full Text PDF

Background: Interactions between dopamine and glutamate in the prefrontal cortex are essential for cognitive functions such as working memory. Modulation of N-methyl-D-aspartic acid (NMDA) receptor functions by dopamine D1 receptor is believed to play a critical role in these functions. The aim of the work reported here is to explore the signaling pathway underlying D1 receptor-mediated trafficking of NMDA receptors in cultured rat prefrontal cortical neurons.

View Article and Find Full Text PDF

Understanding the interaction between dopamine and glutamate, particularly the interaction of dopamine and NMDA receptors, may enable a more rational approach to the treatment of schizophrenia, drug addiction, and other psychiatric disorders. We show that, in prefrontal cortical neurons, dopamine D(1)-induced enhancement of NMDA receptor function depends on rapid insertion of new NMDA receptor 2B subunits on the synaptic surface. Protein kinase A (PKA) inhibitor, but not protein kinase C (PKC) inhibitor, completely blocked dopamine D(1) agonist SKF-81297-induced increase of the total expression of NMDA receptors.

View Article and Find Full Text PDF

The interactions between dopamine and glutamate systems play an essential role in normal brain functions and neuropsychiatric disorders. The mechanism of NMDA receptor regulation through high concentrations of dopamine, however, remains unclear. Here, we show the signaling pathways involved in hyperdopaminergic regulation of NMDA receptor functions in the prefrontal cortex by incubating cortical slices with high concentration of dopamine or administering dopamine reuptake inhibitor 1-(2-[bis-(4-fluorophenyl)methoxy]ethyl)- 4-(3-phenylpropyl)piperazine (GBR12909) in vivo.

View Article and Find Full Text PDF

Dynamic modulation of the number of postsynaptic glutamate receptors is considered one of the main mechanisms for altering the strength of excitatory synapses in the central nervous system (CNS). However, until recently N-methyl-d-aspartate (NMDA) receptors were considered relatively stable once in the plasma membrane, especially in comparison with alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors that are internalized at a high rate. A series of recent studies has changed this viewpoint by revealing that NMDA receptors are subject to constitutive as well as agonist-induced internalization through clathrin-mediated endocytosis.

View Article and Find Full Text PDF

Src is the prototypic protein tyrosine kinase and is critical for controlling diverse cellular functions. Regions in Src define structural and functional domains conserved in many cell signaling proteins. Src also contains a region of low sequence conservation termed the unique domain, the function of which has until now remained enigmatic.

View Article and Find Full Text PDF

NMDA (N-methyl-d-aspartate) receptors (NMDARs) are a principal subtype of excitatory ligand-gated ion channel with prominent roles in physiological and disease processes in the central nervous system. Recognition that glycine potentiates NMDAR-mediated currents as well as being a requisite co-agonist of the NMDAR subtype of 'glutamate' receptor profoundly changed our understanding of chemical synaptic communication in the central nervous system. The binding of both glycine and glutamate is necessary to cause opening of the NMDAR conductance pore.

View Article and Find Full Text PDF