Preventive treatment for people with latent Tuberculosis infection (LTBI) has aroused our great interest. In this paper, we propose and analyze a novel mathematical model of TB considering preventive treatment with media impact. The basic reproduction number is defined by the next generation matrix method.
View Article and Find Full Text PDFSingle-atom nanozymes (SAzymes) with high catalytic activity exhibit the potential to disequilibrate the reactive oxygen metabolic balance in the tumor microenvironment (TME), which contains several endogenous reductive substances such as glutathione (GSH). Herein, a novel nano-assembly (CDs@Pt SAs/NCs@DOX) is first constructed using drug-primed platinum (Pt) single-atom or nanocluster nanozymes with a Pt loading of 34.8%, which exhibits prominent dual enzymatic activities to mimic peroxidase (POD) and glutathione oxidase (GSHOx).
View Article and Find Full Text PDFMath Biosci Eng
January 2023
This work focuses on an HIV infection model with intracellular delay and immune response delay, in which the former delay refers to the time it takes for healthy cells to become infectious after infection, and the latter delay refers to the time when immune cells are activated and induced by infected cells. By investigating the properties of the associated characteristic equation, we derive sufficient criteria for the asymptotic stability of the equilibria and the existence of Hopf bifurcation to the delayed model. Based on normal form theory and center manifold theorem, the stability and the direction of the Hopf bifurcating periodic solutions are studied.
View Article and Find Full Text PDFAbstractResource competition theory predicts coexistence and exclusion patterns based on species' *s, the minimum resource values required for a species to persist. A central assumption of the theory is that all species have equal access to resources. However, many systems are characterized by preemption exploitation, where some species deplete resources before their competitors can access them (e.
View Article and Find Full Text PDFIn this paper, we formulate a stage-structured predator-prey model with mutual interference, in which includes two discrete delays. By theoretical analysis, we establish the stability of the unique positive equilibrium and the existence of Hopf bifurcation when the maturation delay for predators is used as the bifurcation parameter. Our results exhibit that the maturation delay for preys does not affect the stability of the positive equilibrium.
View Article and Find Full Text PDFAt present, dengue is the most common mosquito-borne viral disease in the world, and the global dengue incidence is increasing day by day due to climate changing. Here, we present a mathematical model of dengue viruses (DENVs) dynamics in micro-environment (cellular level) consisting of healthy cells, infected cells, virus particles and T-cell mediated adaptive immunity. We have considered the explicit role of cytokines and antibody in our model.
View Article and Find Full Text PDFIn this paper, a previous tumour-immune interaction model is simplified by neglecting a relatively weak direct immune activation by the tumour cells, which can still keep the essential dynamics properties of the original model. As the immune activation process is not instantaneous, we now incorporate one delay for the activation of the effector cells (ECs) by helper T cells (HTCs) into the model. Furthermore, we investigate the stability and instability regions of the tumour-presence equilibrium state of the delay-induced system with respect to two parameters, the activation rate of ECs by HTCs and the HTCs stimulation rate by the presence of identified tumour antigens.
View Article and Find Full Text PDFObjectives: To investigate the heterogeneous transmission patterns of Middle East respiratory syndrome (MERS) in the Republic of Korea, with a particular focus on epidemiological characteristics of superspreaders.
Design: Retrospective epidemiological analysis.
Setting: Multiple healthcare facilities of secondary and tertiary care centres in an urban setting.
In this paper, on the basis of the simplified two-dimensional virus infection dynamics model, we propose two extended models that aim at incorporating the influence of activation-induced apoptosis which directly affects the population of uninfected cells. The theoretical analysis shows that increasing apoptosis plays a positive role in control of virus infection. However, after being included the third population of cytotoxic T lymphocytes immune response in HIV-infected patients, it shows that depending on intensity of the apoptosis of healthy cells, the apoptosis can either promote or comfort the long-term evolution of HIV infection.
View Article and Find Full Text PDF