J Control Release
December 2024
New modes of targeted drug delivery are emerging with promise of enhancing therapeutic efficacy while reducing side effects. This review examines the landscape of metabolic glycan labelling-a technique gaining traction for its potential in specific drug targeting. By exploiting the natural glycan synthetic pathway of monosaccharides, unnatural sugar analogues are incorporated into glycoproteins, allowing for the presentation of unique functional groups on cells.
View Article and Find Full Text PDFMetabolic oligosaccharide engineering (MOE) of cells with synthetic monosaccharides can introduce functionality to the glycans of cell membranes. Unnatural sugars (e. g.
View Article and Find Full Text PDFBoth lamellar and non-lamellar configurations are naturally present in bio-membranes, and the synthetic lipid-based liquid crystalline nano-assemblies, mimicking these unique structures, (including liposomes, cubosomes and hexosomes) are applicable in the controlled delivery of bioactives. However, it remains uncertain whether these nanosystems retain their original phase identity upon contact with blood circulating cells. This study highlights a novel biological cell flow-through approach at the synchrotron-based small angle X-ray scattering facility (bio-SAXS) to unravel their real-time phase evolution when incubated with human monocytic cells (THP-1) in suspension.
View Article and Find Full Text PDFNonlamellar lipid-based liquid crystalline (LLC) nanoparticles possessing different internal nanostructures, specifically the 3D-ordered cubosomes (V phase) and the 2D-ordered hexosomes (H phase), are of increasing interest as drug delivery systems. To facilitate their development, it is important that we understand their interactions with healthy human umbilical vein endothelial cells (HUVECs). To this end, a 3D cells-in-a-tube model that recapitulates the basic morphology (i.
View Article and Find Full Text PDFIn the research field of nanostructured systems for biomedical applications, increasing attention has been paid to using biomimetic, dynamic cellular models to adequately predict their bio-nano behaviours. This work specifically evaluates the biointeractions of nanostructured lipid-based particles (cubosomes) with human vascular cells from the aspects of tissue dimension (conventional 2D well plate versus 3D dynamic tubular vasculature) and shear flow effect (static, venous and arterial flow-mimicking conditions). A glass capillary-hosted, 3D tubular endothelial construct was coupled with circulating luminal fluid flow to simulate the human vascular systems.
View Article and Find Full Text PDF