Colorectal cancer (CRC) is now the third most common cancer worldwide. However, the development cycle for anticancer drugs is lengthy and the failure rate is high, highlighting the urgent need for new tumor models for CRC-related research. The decellular matrix (dECM) offers numerous cell adhesion sites, proteoglycan and cytokines.
View Article and Find Full Text PDFCurrently, vascular grafting is the preferred option to replace or bypass the defective vascular segments, but finding materials with good biocompatibility and diversity alternative for practical clinical applications are still the challenge. The construction of tissue engineered blood vessels (TEBVs) with complex structures will be realized using 3D bioprinting technology, which provides a new idea for vascular transplantation. In this paper, the decellularized extracellular matrix (dECM)/nano clay (NC)/sodium alginate (SA) hybrid bioink was prepared to construct tubular scaffolds in vitro by coaxial 3D bioprinting.
View Article and Find Full Text PDFSmall extracellular vesicles (sEVs) are membranous vesicles released from cellular structures through plasma membrane budding. These vesicles contain cellular components such as proteins, lipids, mRNAs, microRNAs, long-noncoding RNA, circular RNA, and double-stranded DNA, originating from the cells they are shed from. Ranging in size from ≈25 to 300 nm and play critical roles in facilitating cell-to-cell communication by transporting signaling molecules.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) shows great promise for early diagnosis due to its high specificity and rapid detection capabilities. However, its application is often hindered by substrate instability and insufficient interaction between the substrate and incident light. To address these challenges, a photonic-plasmonic strategy is often employed to enhance sensing performance but it is generally limited by the low efficiency of plasmonic metal and optical cavity resonances.
View Article and Find Full Text PDFBioreactor can provide a dynamic culture environment for the in vitro construction of osteochondral tissue engineering. They facilitate more efficient exchange of nutrients and provide mechanical and other beneficial stimulation. Previous findings demonstrated that rotary flask (RF) bioreactor, rotary cell culture system (RCCS), or electromagnetic field (EMF) mediated scaffold culture could create a favorable dynamic environment for osteochondral tissue engineering.
View Article and Find Full Text PDFRadiotherapy is a common local treatment for breast cancer, and while it is effective in targeting tumor cells, it inevitably causes significant side effects. These include excessive production of reactive oxygen species (ROS), repeated inflammatory, and severe skin ulceration, all of which can hinder the wound healing process. As a result, there is a pressing need for multifunctional medical dressings that can support wound repair following radiotherapy.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
September 2024
Breast cancer is the most common cancer in women and one of the deadliest cancers worldwide. According to the distribution of tumor tissue, breast cancer can be divided into invasive and non-invasive forms. The cancer cells in invasive breast cancer pass through the breast and through the immune system or systemic circulation to different parts of the body, forming metastatic breast cancer.
View Article and Find Full Text PDFThe transplantation of islet beta cells offers an alternative to heterotopic islet transplantation for treating type 1 diabetes mellitus (T1DM). However, the use of systemic immunosuppressive drugs in islet transplantation poses significant risks to the body. To address this issue, we constructed an encapsulated hybrid scaffold loaded with islet beta cells.
View Article and Find Full Text PDFThe release of antibiotics or anions by traditional bacteriostatic agents led to the development of bacterial drug resistance and environmental pollution. Ionic liquids (ILs) have become important choices for antibacterial agents because of their excellent physical, chemical and biological properties. In this paper, the bioactivities of 1-vinyl-3-butylimidazolium chloride ([VBIM]Cl, IL) and poly (1-vinyl-3-butylimidazolium chloride) (P[VBIM]Cl, PIL) were evaluated, and the potential antibacterial material was used to synthesize hydrogels.
View Article and Find Full Text PDFTo fulfil the demands of rapid proliferation, tumour cells undergo significant metabolic alterations. Suppression of hyperactivated metabolism has been proven to counteract tumour growth. However, whether the reactivation of downregulated metabolic pathways has therapeutic effects remains unexplored.
View Article and Find Full Text PDFBlood vessels are the tubes through which blood flows and are divided into three types: millimeter-scale arteries, veins, and capillaries as well as micrometer-scale capillaries. Arteries and veins are the conduits that carry blood, while capillaries are where blood exchanges substances with tissues. Blood vessels are mainly composed of collagen fibers, elastic fibers, glycosaminoglycans and other macromolecular substances.
View Article and Find Full Text PDFFlavonoids, known for their abundance in Eucommia ulmoides pollen, possess diverse biological functions, including antioxidants, antibacterial agents, and anti-tumor properties. This study aims to establish effective parameters for flavonoid extraction from Eucommia ulmoides pollen using a microwave-assisted method, characterize the flavonoid composition of the extracted material, and explore its biological activities. Building upon the initial results from single-factor experiments, response surface methodology was employed to optimize the extraction parameters.
View Article and Find Full Text PDFIt is critical to explore the effects of electromagnetic field (EMF) on the construction of functional osteochondral tissue, which has shown certain clinical significance for the treatment of osteochondral injury. At present, there are few studies on the effect of the direction of EMF on cells. This study aimed to investigate the effects of EMF coupling on different parameters to control adipose-derived stem cells (ADSCs) proliferation and specific chondrogenic and osteogenic differentiation at 2D level and 3D level.
View Article and Find Full Text PDFBreast cancer is one of the most common malignant tumors in women all over the world. Mastectomy is the most effective treatment, but there are serious problems such as high tumor recurrence rate and side effects of chemotherapy. Therefore, there is an urgent need for a therapeutic strategy that can effectively promote postoperative wound healing and inhibit local tumor recurrence.
View Article and Find Full Text PDFDiabetic foot ulcers are one of the most serious of the numerous complications of diabetes mellitus, causing great physical trauma and financial stress to patients, and accelerating wound healing in diabetic patients remains one of the major clinical challenges. Exosomes from adipose-derived stem cells can directly and indirectly promote wound healing. However, due to the low retention rate of exosomes in the wound, exosome treatment is difficult to achieve the expected effect.
View Article and Find Full Text PDFPleural mesothelioma (PM) is a highly aggressive, fast-growing asbestos-induced cancer with limited effective treatments. There has been interest in using naturally occurring anticancer agents derived from plant materials for the treatment of PM. However, it is unclear if an aqueous extract from (QV0) has activity against PM.
View Article and Find Full Text PDFThe skin plays an important role in vitamin D synthesis, humoral balance, temperature regulation, and waste excretion. Due to the complexity of the skin, fluids loss, bacterial infection, and other life-threatening secondary complications caused by skin defects often lead to the damage of skin functions. 3D bioprinting technology, as a customized and precise biomanufacturing platform, can manufacture dressings and tissue engineering scaffolds that accurately simulate tissue structure, which is more conducive to wound healing.
View Article and Find Full Text PDFBackground: Respiratory diseases are the 2nd leading cause of death globally. The current treatments for chronic lung diseases are only supportive. Very few new classes of therapeutics have been introduced for lung diseases in the last 40 years, due to the lack of reliable lung models that enable rapid, cost-effective, and high-throughput testing.
View Article and Find Full Text PDFDecellularized extracellular matrix is one form of natural material in tissue engineering. The process of dECM retains the tissue microstructure, provides good cell adhesion sites, maintains most of biological signals that promotes the survival and differentiation ability of cells. In this study, sheep kidney was decellularized followed by histochemical staining, elemental analysis and scanning electron microscopy characterizations.
View Article and Find Full Text PDFBone tissue engineering is a novel and efficient repair method for bone tissue defects, and the key step of the bone tissue engineering repair strategy is to prepare non-toxic, metabolizable, biocompatible, bone-induced tissue engineering scaffolds of suitable mechanical strength. Human acellular amniotic membrane (HAAM) is mainly composed of collagen and mucopolysaccharide; it has a natural three-dimensional structure and no immunogenicity. In this study, a polylactic acid (PLA)/Hydroxyapatite (nHAp)/Human acellular amniotic membrane (HAAM) composite scaffold was prepared and the porosity, water absorption and elastic modulus of the composite scaffold were characterized.
View Article and Find Full Text PDF109Tissue-engineered scaffolds are more commonly used to construct three-dimensional (3D) tumor models for studies when compared to the conventional two-dimensional (2D) cell culture because the microenvironments provided by the 3D tumor models closely resemble the system and could achieve higher success rate when the scaffolds are translated for use in pre-clinical animal model. Physical properties, heterogeneity, and cell behaviors of the model could be regulated to simulate different tumors by changing the components and concentrations of materials. In this study, a novel 3D breast tumor model was fabricated by bioprinting using a bioink that consists of porcine liver-derived decellularized extracellular matrix (dECM) with different concentrations of gelatin and sodium alginate.
View Article and Find Full Text PDFCraniofacial bone regeneration is a coupled process of angiogenesis and osteogenesis, which, associated with infection, still remains a challenge in bone defects after trauma or tumor resection. 3D tissue engineering scaffolds with multifunctional-therapeutic properties can offer many advantages for the angiogenesis and osteogenesis of infected bone defects. Hence, in the present study, a microchannel networks-enriched 3D hybrid scaffold composed of decellularized extracellular matrix (dECM), gelatin (Gel), quaterinized chitosan (QCS) and nano-hydroxyapatite (nHAp) (dGQH) was fabricated by an extrusion 3D bioprinting technology.
View Article and Find Full Text PDFCompared with conventional therapeutic approaches, nanomedicines are attracting a growing interest due to their better targeting ability, higher delivery efficiency, and good water solubility. However, conventional drug efficacy assessment methods are based on a two-dimensional (2D) culture approach of single cells to obtaintherapeutic effects, which may not be representative of actual tumors. Based on the above considerations, the three-dimensional (3D) cell culture models became a better choice since they can increase the complexity ofsystems and provide a biomimetic microenvironment that is closer to thenative than 2D cultures.
View Article and Find Full Text PDF