Publications by authors named "Yuen Ting Cheung"

Background: Interpreting the pathogenicity of genetic variants associated with rare diseases is a laborious and time-consuming endeavour. To streamline the diagnostic process and lighten the burden of variant interpretation, it is crucial to automate variant annotation and prioritization. Unfortunately, currently available variant interpretation tools lack a unified and comprehensive workflow that can collectively assess the clinical significance of these types of variants together: small nucleotide variants (SNVs), small insertions/deletions (INDELs), copy number variants (CNVs) and structural variants (SVs).

View Article and Find Full Text PDF

Insertions are one of the major types of structural variations and are defined as the addition of 50 nucleotides or more into a DNA sequence. Several methods exist to detect insertions from next-generation sequencing short read data, but they generally have low sensitivity. Our contribution is two-fold.

View Article and Find Full Text PDF

Pressure ulcer (PU) is a chronic wound often seen in patients with spinal cord injury and other bed-bound individuals, particularly in the elderly population. Despite its association with high mortality, the pathophysiology of PU remains poorly understood. In this study, we compared single-cell transcriptomic profiles of human epidermal cells from PU wound edges with those from uninjured skin and acute wounds in healthy donors.

View Article and Find Full Text PDF

Mitochondrial fragmentation due to fission/fusion imbalance has often been linked to mitochondrial dysfunction and apoptosis in neurodegeneration. Conventionally, it is believed that once mitochondrial morphology shifts away from its physiological tubular form, mitochondria become defective and downstream apoptotic signaling pathways are triggered. However, our study shows that beta-amyloid (Aβ) induces morphological changes in mitochondria where they become granular-shaped and are distinct from fragmented mitochondria in terms of both morphology and functions.

View Article and Find Full Text PDF

Although Wnt7a has been implicated in axon guidance and synapse formation, investigations of its role in the early steps of neurogenesis have just begun. We show here that Wnt7a is essential for neural stem cell self-renewal and neural progenitor cell cycle progression in adult mouse brains. Loss of Wnt7a expression dramatically reduced the neural stem cell population and increased the rate of cell cycle exit in neural progenitors in the hippocampal dentate gyrus of adult mice.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an aging-related progressive neurodegenerative disorder. Previous studies suggested that various soluble Aβ species are neurotoxic and able to activate apoptosis and autophagy, the type I and type II programmed cell death, respectively. However, the sequential and functional relationships between these two cellular events remain elusive.

View Article and Find Full Text PDF

Human neuroblastoma SH-SY5Y is a dopaminergic neuronal cell line which has been used as an in vitro model for neurotoxicity experiments. Although the neuroblastoma is usually differentiated by all-trans-retinoic acid (RA), both RA-differentiated and undifferentiated SH-SY5Y cells have been used in neuroscience research. However, the changes in neuronal properties triggered by RA as well as the subsequent responsiveness to neurotoxins have not been comprehensively studied.

View Article and Find Full Text PDF

Dysregulation of the hypothalamic-pituitary-adrenocortical (HPA) system plays a causal role in the development and course of depression. Clinically effective antidepressant drugs normalize the disturbed activity of the HPA axis by inhibition of corticotrophin releasing factor gene promoter activity. Furocoumarins from Psoralea corylifolia have been demonstrated to possess potent antidepressant properties.

View Article and Find Full Text PDF

Background: Median survival for patients with glioblastoma multiforme, the most aggressive glioma, is only 12-15 months, despite multimodal treatment that includes surgery, chemotherapy, and radiotherapy. Thus, identification of genes that control the progression of glioblastoma multiforme is crucial for devising new therapies. We investigated the involvement of cell cycle-related kinase (CCRK), a novel protein kinase that is homologous to cyclin-dependent kinase 7, in glioblastoma multiforme carcinogenesis.

View Article and Find Full Text PDF