Publications by authors named "Yuen Kwong Ip"

Giant clams harbor three genera of symbiotic dinoflagellates (Symbiodinium, Cladocopium, and Durusdinium) as extracellular symbionts (zooxanthellae). While symbiotic dinoflagellates can synthesize amino acids to benefit the host, they are nitrogen-deficient. Hence, the host must supply them with nitrogen including urea, which can be degraded to ammonia and carbon dioxide by urease (URE).

View Article and Find Full Text PDF

Mudskippers are amphibious fishes living in mudflats and mangroves. These fishes hold air in their large buccopharyngeal-opercular cavities where respiratory gas exchange takes place via the gills and higher vascularized epithelium lining the cavities and also the skin epidermis. Although aerial ventilation response to changes in ambient gas concentration has been studied in mudskippers, the localization and distribution of respiratory chemoreceptors, their neurochemical coding and function as well as physiological evidence for the gill or skin as site for O and CO sensing are currently not known.

View Article and Find Full Text PDF

Immunofluorescence is a biological technique that allows displaying the localization of the target molecule through a fluorescent microscope. We used a combination of gold nanoparticles and the fluorescein isothiocianate, FITC, as optical contrast agents for laser scanning confocal microscopy imaging to localize the endothelial-like nitric oxide synthase in skeletal muscle cells in a three-dimensional tissue phantom at the depth of 4µm. The FITC detected fluorescence intensity from gold-nanoparticles-labelled cells was brighter than the emission intensity from unlabelled cells.

View Article and Find Full Text PDF

Background: The Mozambique tilapia Oreochromis mossambicus has the ability to adapt to a broad range of environmental salinities and has long been used for investigating iono-osmoregulation. However, to date most studies have focused mainly on several key molecules or parameters hence yielding a limited perspective of the versatile iono-osmoregulation in the euryhaline fish. This study aimed to capture transcriptome-wide differences between the freshwater- and seawater-acclimated gills of the Mozambique tilapia.

View Article and Find Full Text PDF

The ability of euryhaline Mozambique tilapia to tolerate extreme environmental salinities makes it an excellent model for investigating iono-regulation. This study aimed to characterize and fill important information gap of the expression levels of key ion transporters for Na(+) and Cl(-) in the gill and esophageal-gastrointestinal tract of Mozambique tilapia acclimated to freshwater (0 ppt), seawater (30 ppt) and hypersaline (70 ppt) environments. Among the seven genes studied, it was found that nkcc2, nkcc1a, cftr, nka-α1 and nka-α3, were more responsive to salinity challenge than nkcc1b and ncc within the investigated tissues.

View Article and Find Full Text PDF

Background: The availability of oxygen is a limiting factor for neuronal survival since low levels account not only for the impairment of physiological activities such as sleep-wake cycle, but above all for ischemic-like neurodegenerative disorders. In an attempt to improve our knowledge concerning the type of molecular mechanisms operating during stressful states like those of hypoxic conditions, attention was focused on eventual transcriptional alterations of some key AMPAergic silent neuronal receptor subtypes (GluR1 and GluR2) along with HSPs and HIF-1α during either a normoxic or a hypoxic aestivation of a typical aquatic aestivator, i.e.

View Article and Find Full Text PDF

Ammonia in dipnoans plays a crucial role on neuronal homeostasis, especially for those brain areas that maintain torpor and awakening states in equilibrium. In the present study, specific α subunits of the major neuroreceptor inhibitory complex (GABA(A) R), which predominated during some phases of aestivation of the lungfish Protopterus annectens, turned out to be key adaptive factors of this species. From the isolation, for the first time, of the encoding sequence for GABA(A) R α₁, α₄ , and α₅ subunits in Protopterus annectens, qPCR and in situ hybridization levels of α₄ transcript in thalamic (P < 0.

View Article and Find Full Text PDF

The African slender lungfish, Protopterus dolloi, is highly adapted to withstand periods of drought by secreting a mucous cocoon and estivating for periods of months to years. Estivation is similar to the diapause and hibernation of other animal species in that it is characterized by negligible activity and a profoundly depressed metabolic rate. As is typically observed in quiescent states, estivating P.

View Article and Find Full Text PDF

The potential importance of lipids and ketone bodies as fuels in the African lungfish, Protopterus dolloi, and the role of oxidative metabolism, were examined under control, fasted and aestivated conditions. In aestivating but not fasting lungfish, the activities of citrate synthase (CS) and cytochrome c oxidase (CCO) (enzymes of oxidative metabolism) showed tissue-specific changes. Significant reductions in CS activity occurred in the kidney, heart, gill and muscle, and in CCO in the liver and kidney tissues.

View Article and Find Full Text PDF

The potential importance of carbohydrates and amino acids as fuels during periods of fasting and aestivation in the African lungfish, Protopterus dolloi, were examined. No significant decreases in tissue glycogen levels were observed following 60 days of fasting or aestivation, suggesting lungfish may undergo 'glycogen sparing'. Yet glycogenolysis may be important during aestivation based on the differing responses of two flux-generating enzymes of the glycolytic pathway, hexokinase (HK) and pyruvate kinase (PK).

View Article and Find Full Text PDF

African lungfish Protopterus dolloi is an obligatory air-breather, which aestivates in a cocoon during the dry season. Aestivation associates with functional modifications in many tissues and organs, including heart and kidney. Due to its pleiotropic modulatory effects, nitric oxide (NO), generated by nitric oxide synthases (NOSs), may coordinate organ rearrangement, allowing adaptive adjustments under stressful environmental conditions.

View Article and Find Full Text PDF

This study aimed to examine effects of short- or long-term acclimation to brackish water or seawater on the climbing perch, Anabas testudineus, which is an aquatic air-breathing teleost living typically in freshwater. A. testudineus exhibits hypoosmotic and hypoinoic osmoregulation; the plasma osmolality, [Na+] and [Cl-] of fish acclimated to seawater were consistently lower than those of the external medium.

View Article and Find Full Text PDF

This study aimed to determine effects of 6-day progressive increase in salinity from 1 per thousand to 15 per thousand on nitrogen metabolism and excretion in the soft-shelled turtle, Pelodiscus sinensis. For turtles exposed to 15 per thousand water on day 6, the plasma osmolality and concentrations of Na+, Cl- and urea increased significantly, which presumably decreased the osmotic loss of water. Simultaneously, there were significant increases in contents of urea, certain free amino acids (FAAs) and water-soluble proteins that were involved in cell volume regulation in various tissues.

View Article and Find Full Text PDF

The interrenal gland (adrenocortical homolog) of elasmobranchs produces a unique steroid, 1alpha-hydroxycorticosterone (1alpha-B). The synthesis of this and most other steroids requires both cholesterol side chain cleavage (CYP11A) and 3beta-hydroxysteroid dehydrogenase (HSD3). To facilitate the study of elasmobranch steroidogenesis, we isolated complementary DNAs encoding CYP11A and HSD3 from the freshwater stingray Potamotrygon motoro.

View Article and Find Full Text PDF

The objectives of this study are to determine whether a full complement of ornithine-urea cycle (OUC) enzymes is present in the hepatopancreas of the giant African snail Achatina fulica, and to investigate whether the rate of urea synthesis and the OUC capacity can be up-regulated during 23 days of fasting or aestivation, or 24 hr post-injection with NH(4)Cl (10 micromol g(-1) snail) into the foot muscle. A. fulica is ureotelic and a full complement of OUC enzymes, including carbamoyl phosphate synthetase III (CPS III), was detected from its hepatopancreas.

View Article and Find Full Text PDF

This study was undertaken to test the hypothesis that the rate of urea synthesis in Protopterus aethiopicus was up-regulated to detoxify ammonia during the initial phase of aestivation in air (day 1-day 12), and that a profound suppression of ammonia production occurred at a later phase of aestivation (day 35-day 46) which eliminated the need to sustain the increased rate of urea synthesis. Fasting apparently led to a greater rate of nitrogenous waste excretion in P. aethiopicus in water, which is an indication of increases in production of endogenous ammonia and urea probably as a result of increased proteolysis and amino acid catabolism for energy production.

View Article and Find Full Text PDF

The objectives of this study were (1) to determine the type of carbamoyl phosphate synthetase (CPS) present, and the compartmentalization of arginase, in the livers of the African lungfishes, Protopterus aethiopicus and Protopterus annectens, and (2) to elucidate if these two lungfishes were capable of increasing the rates of urea synthesis and capacities of the ornithine-urea cycle (OUC) during 6 days of aerial exposure without undergoing aestivation. Like another African lungfish, Protopterus dolloi, reported elsewhere, the CPS activities from the livers of P. aethiopicus and P.

View Article and Find Full Text PDF

The crab-eating frog Rana cancrivora is one of only a handful of amphibians worldwide that tolerate saline waters. They typically inhabit brackish water of mangrove forests of Southeast Asia, but live happily in freshwater and can be acclimated to 75% seawater (25 ppt) or higher. We report here that after transfer of juvenile R.

View Article and Find Full Text PDF

Monopterus albus has to deal with high environmental ammonia concentrations during dry seasons and agricultural fertilization in rice fields. In this study, NH4HCO3 (10 micromol per g fish) was injected into the peritoneal cavity of M. albus, raising the level of ammonia in the body, in order to elucidate the strategies involved in defense against the toxicity of exogenous ammonia.

View Article and Find Full Text PDF