Nanoscale Res Lett
August 2019
The application potential of wearable electronics in the healthcare field has been of great interest over the past several decades. Flexible and wearable devices based on skin-friendly soft elastic materials can be snugly attached to the surface of human skin, so that a series of vital health information such as wrist pulse, body temperature, and blood glucose can be extracted and analyzed to help the patient maintain physical fitness. Here, we outlined the most common types of wearable electronics for monitoring human health information, including force sensors, temperature sensors, physiological biochemical sensors, and multifunctional sensors.
View Article and Find Full Text PDFFlexible pressure sensors (FPS) have shown wide applications in artificial robotics, wearable devices, electronic skins, and biomedical systems; however, complicated procedures like micromachining and micromolding are often involved to achieve high performance of the sensor. In this work, a novel capacitive FPS was prepared by using silver nanowire (AgNW)-paper substrates as electrodes and polydimethylsiloxane (PDMS) as dielectrics, and results revealed that the sensitivity and dynamic range of the as-prepared sensor were 1.05 kPa and 1 Pa to 2 kPa, respectively, which were comparable to the state-of-the-art ones; practical application measurements further indicated that the capacitive FPS was capable of detecting bending, finger tap, and human speech as well as identifying object profile; therefore, it shows good potential for applying in artificial skin and wearable devices.
View Article and Find Full Text PDF