Publications by authors named "Yueliang Qian"

Objectives: To propose a deep learning-based classification framework, which can carry out patient-level benign and malignant tumors classification according to the patient's multi-plane images and clinical information.

Methods: A total of 430 cases of spinal tumor, including axial and sagittal plane images by MRI, of which 297 cases for training (14072 images), and 133 cases for testing (6161 images) were included. Based on the bipartite graph and attention learning, this study proposed a multi-plane attention learning framework, BgNet, for benign and malignant tumor diagnosis.

View Article and Find Full Text PDF

Background: The application of deep learning has allowed significant progress in medical imaging. However, few studies have focused on the diagnosis of benign and malignant spinal tumors using medical imaging and age information at the patient level. This study proposes a multi-model weighted fusion framework (WFF) for benign and malignant diagnosis of spinal tumors based on magnetic resonance imaging (MRI) images and age information.

View Article and Find Full Text PDF

Molecular subtypes of breast cancer are important references to personalized clinical treatment. For cost and labor savings, only one of the patient's paraffin blocks is usually selected for subsequent immunohistochemistry (IHC) to obtain molecular subtypes. Inevitable block sampling error is risky due to the tumor heterogeneity and could result in a delay in treatment.

View Article and Find Full Text PDF

Supervised learning methods are commonly applied in medical image analysis. However, the success of these approaches is highly dependent on the availability of large manually detailed annotated dataset. Thus an automatic refined segmentation of whole-slide image (WSI) is significant to alleviate the annotation workload of pathologists.

View Article and Find Full Text PDF

Most existing wearable gait analysis methods focus on the analysis of data obtained from inertial sensors. This paper proposes a novel, low-cost, wireless and wearable gait analysis system which uses microphone sensors to collect footstep sound signals during walking. This is the first time a microphone sensor is used as a wearable gait analysis device as far as we know.

View Article and Find Full Text PDF