Inflammatory bowel diseases (IBDs), which encompasses Crohn's disease and ulcerative colitis, is a chronic inflammatory condition associated with an increased risk of colorectal cancer (CRC). Small RNAs have been linked to various illnesses, including IBD and CRC. These small RNAs also serve as potential biomarkers for these diseases, offering a cutting‑edge approach to investigating possible treatments.
View Article and Find Full Text PDFRenal cell carcinoma (RCC) represents a significant portion of genitourinary cancers, marked by challenging prognosis and high metastasis rates. Immunotherapy has been applied in managing advanced renal cell carcinoma, but the therapeutic outcomes are unsatisfactory. In this study, we order to construct a Janus kinase/signal transduction and activator transcriptional (JAK/STAT)-related signature linked to kidney patient outcomes for better predicting the efficacy to immune checkpoint inhibitors (ICIs) and to provide guidance for effective combination therapy.
View Article and Find Full Text PDF(1) Background: Resisting anoikis is a vital and necessary characteristic of malignant cancer cells, but there is no existing quantification method. Herein, a sensitive probe for assessing anoikis resistance of cancer cells detached from the extracellular matrix was developed based on the aggregation-induced emission (AIE) of AIEgens. It has been reported that detached cancer cell endocytose activated integrin clusters, and in the endosome these clusters recruit and activate phosphorylate focal adhesion kinase (pFAK) in the cytoplasm to induce signaling that supports the growth of detached cancer cells.
View Article and Find Full Text PDFEnhanced permeation and retention (EPR) effect, the mechanism by which nanodrugs accumulate in tumors and acquire superior curative effect. The questions of these mechanisms occur because of limited clinical transformation of engineered nanomaterials after 30 years. The difference of EPR limits the therapeutic effect of nanodrugs in the individual patient.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
October 2021
Fullerenol nanoparticles were found to significantly modulate the gut microbiota and selectively enrich the short-chain fatty acids (SCFAs) production by adjusting the gut microbacteria in mice models. In this research, we screened the from seven strains and investigated the interactions and mechanism between the and fullerenol NPs fermentation. The results shows that fullerenol NPs increased the amounts of acetate and butyrate of without significant bacteria growth in the complete medium.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2020
() eradication by antibiotics and proton pump inhibitor treatment is limited by the low pH microenvironment in the stomach and can lead to antibiotic resistance. We fabricated fullerenol nanoparticles (FNPs) with varied chemical structures responding to a pinacol rearrangement of vicinal hydroxyl to form carbonyls in low pH environments. An obvious increase in C═O/C-O was induced in low pH and was positively correlated with a peroxidase-like activity.
View Article and Find Full Text PDFCorrection for 'Modulated podosome patterning in osteoclasts by fullerenol nanoparticles disturbs the bone resorption for osteoporosis treatment' by Kui Chen et al., Nanoscale, 2020, 12, 9359-9365, DOI: 10.1039/D0NR01625J.
View Article and Find Full Text PDFOveractivation and excessive differentiation of osteoclasts (OCs) has been implicated in the course of bone metabolism-related diseases. Although fullerenol nanoparticles (fNPs) have been suggested to inhibit OC differentiation and OC function in our previous work, systemic studies on the effect of fNPs on bone diseases, e.g.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2020
We report the construction of blood cell membrane cloaked mesoporous silica nanoparticles for delivery of nanoparticles [fullerenols (Fols)] with fibrinolysis activity which endows the active Fol with successful thrombolysis effect . , Fols present excellent fibrinolysis activity, and the Fol with the best fibrinolysis activity is screened based on the correlation between Fols' structure and their fibrinolysis activity. However, the thrombolytic effect is not satisfactory.
View Article and Find Full Text PDFThe intestinal epithelium is a major barrier that limits the absorption of oral drugs. The integrity of the epithelial tissue is a very important factor for preventing intestinal diseases. However, destabilization of the epithelium can promote the transportation of nanocarriers and increase the absorption of oral drugs.
View Article and Find Full Text PDFHyperactive osteoclasts (OCs) are a fundamental reason for excessive bone resorption and consequent osteoporosis that lead to one-third of the patients sustaining a fracture. OCs, with the help of acidifying vesicles containing vacuolar-type H-ATPase (V-ATPase), transport cytoplasmic protons into a resorptive pit and create an acidic microenvironment where proteolytic enzymes degrade the bone matrix. Here, we report a previously undescribed application of gold nanoparticles (AuNPs) to inhibit excessive bone resorption by regulating the acidic microenvironment in which OCs resorb bone.
View Article and Find Full Text PDFACS Appl Bio Mater
October 2019
Nanocrystallization can improve the dissolvability of insoluble medicines in water, making them easier to administer. In the present study, sirolimus (SRL) was nanocrystallized, and the transport mechanism and efficacy of both formulations were compared and . The results showed that the 120 nm sirolimus nanocrystals (SRL NCs) had better ability to pass through the Caco-2 cell monolayer.
View Article and Find Full Text PDFIncreased deformability and softness endow tumor cells with highly invasive and metastatic capabilities. We exploited these characteristics to fabricate a high-throughput microfluidic device to measure cell deformability and separate cancer cells. Driven by hydrodynamic forces, the cells with better deformability passed through the chip faster, whereas stiffer cells passed through the device over a longer time period.
View Article and Find Full Text PDFEndocytosis is an important pathway to regulate the metabolism of low-density lipoprotein (LDL) in cells. At the same time, engineering nanoparticles (ENPs) enter the cell through endocytosis in biomedical applications. Therefore, a crucial question is whether the nanoparticles involved in endocytosis could impact the natural metabolism of LDL in cells.
View Article and Find Full Text PDF[Pd(L)(DMSO)Cl] (1) and [Pt(L)(DMSO)Cl] (2) with 9-amino-oxoisoaporphine (L), were synthesized and characterized. 1 and 2 are more selectively cytotoxic to Hep-G2 cells versus normal liver cells (HL-7702). Various experiments showed that 2 acted as telomerase inhibitors targeting G4-DNA and triggered cell apoptosis by interacting with c-myc G4-DNA.
View Article and Find Full Text PDF