Various cells such as cardiomyocytes, fibroblasts and endothelial cells constitute integral components of cardiac tissue. The health and stability of cardiac ecosystem are ensured by the action of a certain type of cell and the intricate interactions between multiple cell types. The dysfunctional cells exert a profound impact on the development of cardiovascular diseases by involving in the pathological process.
View Article and Find Full Text PDFHuman stem cells and derivatives transplantation are widely used to treat nervous system diseases, while the fate determination of transplanted cells is not well elucidated. To explore cell fate changes of human brain organoids before and after transplantation, human brain organoids are transplanted into prefrontal cortex (PFC) and hippocampus (HIP), respectively. Single-cell sequencing is then performed.
View Article and Find Full Text PDFDue to aging populations and changes in lifestyle, cardiovascular diseases including cardiomyopathy, hypertension, and atherosclerosis, are the leading causes of death worldwide. The heart is a complicated organ composed of multicellular types, including cardiomyocytes, fibroblasts, endothelial cells, vascular smooth muscle cells, and immune cells. Cellular specialization and complex interplay between different cell types are crucial for the cardiac tissue homeostasis and coordinated function of the heart.
View Article and Find Full Text PDFDeciphering patterns of connectivity between neurons in the brain is a critical step toward understanding brain function. Imaging-based neuroanatomical tracing identifies area-to-area or sparse neuron-to-neuron connectivity patterns, but with limited throughput. Barcode-based connectomics maps large numbers of single-neuron projections, but remains a challenge for jointly analyzing single-cell transcriptomics.
View Article and Find Full Text PDFCarbon nanotubes (CNTs) had potential applications in energy conversion and storage devices, and it could be prepared by expanded graphite loaded with catalyst at high temperature, however, the mechanism of carbon nanotube growth in expanded graphite need further confirmation. In this work, carbon nanotubes' growth in expanded graphite (EG) were prepared via catalytic pyrolysis reaction using carbores P as a carbon source and Co(NO)•6HO as a catalyst. The results of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDS) indicated the carbon nanotubes could generate in, EG with the presence of carbores P as a carbon source and cobalt nitrate as a catalyst.
View Article and Find Full Text PDFHuman midbrain dopaminergic progenitors (mDAPs) are one of the most representative cell types in both basic research and clinical applications. However, there are still many challenges for the preparation and quality control of mDAPs, such as the lack of standards. Therefore, the establishment of critical quality attributes and technical specifications for mDAPs is largely needed.
View Article and Find Full Text PDF'Human neural stem cells' jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research, is the first guideline for human neural stem cells (hNSCs) in China. This standard specifies the technical requirements, test methods, test regulations, instructions for use, labelling requirements, packaging requirements, storage requirements, transportation requirements and waste disposal requirements for hNSCs, which is applicable to the quality control for hNSCs. It was originally released by the China Society for Cell Biology on 30 August 2022.
View Article and Find Full Text PDFA fundamental interest in developmental neuroscience lies in the ability to map the complete single-cell lineages within the brain. To this end, we developed a CRISPR editing-based lineage-specific tracing (CREST) method for clonal tracing in Cre mice. We then used two complementary strategies based on CREST to map single-cell lineages in developing mouse ventral midbrain (vMB).
View Article and Find Full Text PDFBrain-derived transcriptomes are known to correlate with resting-state brain activity in humans. Whether this association holds in nonhuman primates remains uncertain. Here, we search for such molecular correlates by integrating 757 transcriptomes derived from 100 macaque cortical regions with resting-state activity in separate conspecifics.
View Article and Find Full Text PDFIncreasing evidence suggests that microRNAs' (miRNAs) abnormal expression is one of the main factors of chemotherapy resistance in various cancers. However, the role of miRNAs in lung adenocarcinoma (LUAD) resistance to cisplatin is still unclear. In this study, we analyzed a microarray dataset to investigate miRNAs related to cisplatin resistance in LUAD.
View Article and Find Full Text PDFThe cell lineages across developmental stages remain to be elucidated. Here, we developed single-cell split barcoding (SISBAR) that allows clonal tracking of single-cell transcriptomes across stages in an in vitro model of human ventral midbrain-hindbrain differentiation. We developed "potential-spective" and "origin-spective" analyses to investigate the cross-stage lineage relationships and mapped a multi-level clonal lineage landscape depicting the whole differentiation process.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2023
Perinatal hypoxic-ischaemic encephalopathy is the leading cause of neonatal death and permanent neurological deficits, while the basal ganglia is one of the major nuclei that is selectively and greatly affected in the brains of hypoxic-ischaemic encephalopathy patients, especially in severe cases. Human embryonic stem cell-derived neurons have shown great potential in different types of brain disorders in adults. However, it remains unknown whether and how grafted human embryonic stem cell-derived neurons can repair immature brains with hypoxic-ischaemic encephalopathy.
View Article and Find Full Text PDFOligodendrocyte spheroids (OL-spheroids) containing oligodendrocytes and neurons provide an accessible system to dissect demyelinating diseases and test therapeutic treatment. However, generation of human OL-spheroids is still technically challenging and time-consuming until now. Here, we presented evidence that overexpression of SOX10 and OLIG2 (SO) in human embryonic stem cells (hESCs)-derived ventral forebrain neural progenitors is sufficient to produce forebrain pre-oligodendrocytes (pre-OLs) and mature oligodendrocytes (OLs) within 20-40 days.
View Article and Find Full Text PDFFastCloning, a reliable cloning technique for plasmid construction, is a widely used protocol in biomedical research laboratories. Only two-step molecular manipulations are required to add a gene (cDNA) of interest into the desired vector. However, parallel cloning of the gene into multiple vectors is still a labor-intensive operation, which requires a range of primers for different vectors in high-throughput cloning projects.
View Article and Find Full Text PDFHuman pluripotent stem cell-based (hPSC-based) replacement therapy holds great promise for the treatment of Parkinson's disease (PD). However, the heterogeneity of hPSC-derived donor cells and the low yield of midbrain dopaminergic (mDA) neurons after transplantation hinder its broad clinical application. Here, we have characterized the single-cell molecular landscape during mDA neuron differentiation.
View Article and Find Full Text PDFBrain organoids have been used to recapitulate the processes of brain development and related diseases. However, the lack of vasculatures, which regulate neurogenesis and brain disorders, limits the utility of brain organoids. In this study, we induced vessel and brain organoids, respectively, and then fused two types of organoids together to obtain vascularized brain organoids.
View Article and Find Full Text PDFGenetic composition plays critical roles in the pathogenesis of autism spectrum disorder (ASD). Especially, inherited and de novo intronic variants are often seen in patients with ASD. However, the biological significance of intronic variants is difficult to address.
View Article and Find Full Text PDFAlthough crop residue return increases upland soil emissions of nitrous oxide (NO), a potent greenhouse gas, the mechanisms responsible for the increase remain unclear. Here, we investigate NO emission pathways, gross nitrogen (N)-cycling rates, and associated N-cycling gene abundances in an upland soil following the addition of various organic material under aerobic incubation using a combination of N tracing technique, acetylene (CH) inhibition, and real-time PCR (qPCR) methods. Increased total NO emissions following organic material amendment was attributed to both increased nitrification-derived NO emissions, following increased ammonia-oxidizing bacteria (AOB)-amoA abundance, and denitrification-derived NO emissions, following increased nirS and decreased nosZ abundance.
View Article and Find Full Text PDFDegeneration of dopamine (DA) neurons in the midbrain underlies the pathogenesis of Parkinson's disease (PD). Supplement of DA via L-DOPA alleviates motor symptoms but does not prevent the progressive loss of DA neurons. A large body of experimental studies, including those in nonhuman primates, demonstrates that transplantation of fetal mesencephalic tissues improves motor symptoms in animals, which culminated in open-label and double-blinded clinical trials of fetal tissue transplantation for PD.
View Article and Find Full Text PDFTo develop a disease model for the human Alström Syndrome (AS), we used the episomal reprogramming system and CRISPR/Cas9 technology to generate an induced pluripotent stem cell (iPSC) line with the compound heterozygous patient mutation (ALMS1 c.3902C > A, c.6436C > T) along with an isogenic gene-corrected control iPSC line.
View Article and Find Full Text PDFNumerous studies have used human pluripotent stem cell-derived cerebral organoids to elucidate the mystery of human brain development and model neurological diseases in vitro, but the potential for grafted organoid-based therapy in vivo remains unknown. Here, we optimized a culturing protocol capable of efficiently generating small human cerebral organoids. After transplantation into the mouse medial prefrontal cortex, the grafted human cerebral organoids survived and extended projections over 4.
View Article and Find Full Text PDFCell Stem Cell
January 2021
Although cell transplantation can rescue motor defects in Parkinson's disease (PD) models, whether and how grafts functionally repair damaged neural circuitry in the adult brain is not known. We transplanted hESC-derived midbrain dopamine (mDA) or cortical glutamate neurons into the substantia nigra or striatum of a mouse PD model and found extensive graft integration with host circuitry. Axonal pathfinding toward the dorsal striatum was determined by the identity of the grafted neurons, and anatomical presynaptic inputs were largely dependent on graft location, whereas inhibitory versus excitatory input was dictated by the identity of grafted neurons.
View Article and Find Full Text PDFPrenatal exposure to environmental insults can increase the risk of developing neurodevelopmental disorders. Administration of the antiepileptic drug valproic acid (VPA) during pregnancy is tightly associated with a high risk of neurological disorders in offspring. However, the lack of an ideal human model hinders our comprehensive understanding of the impact of VPA exposure on fetal brain development, especially in early gestation.
View Article and Find Full Text PDF