Droplet electrodispersion is a fundamental phenomenon in various fields, such as electric demulsification, electrospray, and microfluidic manipulation. Electric-magnetic coupling technology, as an emerging noncontact method, shows substantial potential in modulating droplet electrohydrodynamics, yet the influence characteristics and mechanisms of coupled magnetic fields on droplet electrodispersion remain poorly understood. To address this gap, we conducted a detailed molecular dynamics simulation comparing the breakup dynamics of salt-containing droplets under a single electric field versus an electric-magnetic coupling field.
View Article and Find Full Text PDF