Publications by authors named "Yuejing He"

In previous studies, adipocytes were found to play an important role in regulating whole-body nutrition and energy balance, and are also important in energy metabolism, hormone secretion, and immune regulation. Different adipocytes have different contributions to the body, with white adipocytes primarily storing energy and brown adipocytes producing heat. Recently discovered beige adipocytes, which have characteristics in between white and brown adipocytes, also have the potential to produce heat.

View Article and Find Full Text PDF

Background: Polymorphisms (rs1801133 or C677T; rs1801131 or A1298C) of the MTHFR gene and rs1801394 (A66G) of the MTRR gene are important genetic determinants of folate metabolism. A convenient, sensitive, and reliable method is required to detect polymorphisms for the precise supplementation of folate.

Methods: A rapid detection method based on molecular beacon probes that can detect rs1801133, rs1801131, and rs1801394 simultaneously was developed in this study.

View Article and Find Full Text PDF

In this study, a numerical simulation method was employed to investigate and analyze superstructure fiber Bragg gratings (SFBGs) with five duty cycles (50%, 33.33%, 14.28%, 12.

View Article and Find Full Text PDF

Background: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common enzymatic disorder of the erythrocytes that affects 400 million people worldwide. We developed a PCR-reverse dot blot (RDB) assay to screen twenty genotypes of seventeen Chinese G6PD mutations and investigate the spectrum of G6PD deficiency mutations in Dongguan District, Guangdong Province, in southern China.

Method: The PCR-RDB assay consists of multiplex PCR amplification of seven fragments in the G6PD target sequence of wild-type and mutant genomic DNA samples followed by hybridization to a test strip containing allele-specific oligonucleotide probes.

View Article and Find Full Text PDF

Compared with coupled-mode theory (CMT), which is widely used for studies involving optical fiber Bragg gratings (FBGs), the proposed investigation scheme is visualized, diagrammatic, and simple. This method combines the finite element method (FEM) and eigenmode expansion method (EEM). The function of the FEM is to calculate all guided modes that match the boundary conditions of optical fiber waveguides.

View Article and Find Full Text PDF