Exolaccase-propelled humification (E-PH) helps eliminate phenolic pollutants and produce macromolecular precipitates. Herein, we investigated the influencing mechanism of 12 humic precursors (HPs) on exolaccase-enabled bisphenol A (BPA) decontamination and humification. Catechol, vanillic acid, caffeic acid, and gentian acid not only expedited BPA removal but also created large amounts of copolymeric precipitates.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2015
Plant organic contamination poses a serious threat to the safety of agricultural products and human health worldwide, and the association of endophytic bacteria with host plants may decrease organic pollutants in planta. In this study, we firstly determined the growth response and biofilm formation of endophytic Pseudomonas sp. Ph6-gfp, and then systematically evaluated the performance of different plant colonization methods (seed soaking (SS), root soaking (RS), leaf painting (LP)) for circumventing the risk of plant phenanthrene (PHE) contamination.
View Article and Find Full Text PDFA phenanthrene-degrading endophytic bacterium, Pn2, was isolated from Alopecurus aequalis Sobol grown in soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Based on morphology, physiological characteristics and the 16S rRNA gene sequence, it was identified as Massilia sp. Strain Pn2 could degrade more than 95% of the phenanthrene (150 mg · L(-1)) in a minimal salts medium (MSM) within 48 hours at an initial pH of 7.
View Article and Find Full Text PDF