The synthesis and bottom-up assembly of nanocellulose by microbes offers unique advantages to tune and meet key design criteria-rapid renewability, low toxicity, scalability, performance, and degradability-for multi-functional, circular economy textiles. However, development of green processing methods that meet these criteria remains a major research challenge. Here, we harness microbial biofabrication of nanocellulose and draw inspiration from ancient textile techniques to engineer sustainable biotextiles with a circular life cycle.
View Article and Find Full Text PDFBackground: SARS-CoV-2 antigen-based tests are well-calibrated to infectiousness and have a critical role to play in the COVID-19 public health response. We report the development and performance of a unique lateral flow immunoassay (LFA).
Methods: Combinations of several monoclonal antibodies targeting multiple antigenic sites on the SARS-CoV-2 nucleocapsid protein (NP) were isolated, evaluated, and chosen for the development of a LFA termed CoV-SCAN (BioMedomics, Inc.
Atrial fibrillation is the most common heart disease in the world, with around 35 million patients in 2020. Here we reported the generation of IBMS-iPSC-015-06, IBMS-iPSC-016-06, and IBMS-iPSC-017-02 as human induced pluripotent stem cell (iPSC) lines from patients' peripheral blood mononuclear cells (PBMCs) with atrial fibrillation. The cell lines expressed properties of pluripotent stem cells, including pluripotent markers and the ability to differentiate into three germ layers.
View Article and Find Full Text PDFALDH2 gene is coded for the aldehyde dehydrogenase (ALDH), which is an enzyme involved in alcohol metabolism. Compared to normal aldehyde dehydrogenases, a homozygous point mutation on exon 12 from G to A significantly reduces its efficiency. In this study, we have reported the generation of IBMS-iPSC-021-04, IBMS-iPSC-022-01, and IBMS-iPSC-023-03 as induced pluripotent stem cell (iPSC) lines carrying the homozygous form of ALDH2 with the rs671 genetic polymorphism (E487K mutation).
View Article and Find Full Text PDFRecent advances in the interdisciplinary scientific field of machine perception, computer vision, and biomedical engineering underpin a collection of machine learning algorithms with a remarkable ability to decipher the contents of microscope and nanoscope images. Machine learning algorithms are transforming the interpretation and analysis of microscope and nanoscope imaging data through use in conjunction with biological imaging modalities. These advances are enabling researchers to carry out real-time experiments that were previously thought to be computationally impossible.
View Article and Find Full Text PDFThe introduction of induced pluripotent stem cells (iPSCs) has opened up the potential for personalized cell therapies and ushered in new opportunities for regenerative medicine, disease modeling, iPSC-based drug discovery and toxicity assessment. Over the past 10 years, several initiatives have been established that aim to collect and generate a large amount of human iPSCs for scientific research purposes. In this review, we compare the construction and operation strategy of some iPSC banks as well as their ongoing development.
View Article and Find Full Text PDFUp-regulation of ASB6 has been previously associated with late-stage and poor prognosis of oral squamous cell carcinoma (OSCC) patients. To explore the cellular and molecular basis of how ASB6 enhances the malignancy of OSCC, we employed the clonogenicity and migration assays, murine pulmonary metastasis model, Western blot, and immunofluorescence microscopy to characterize the phenotypes of OSCC cells with lentiviral-based stable overexpression or knockdown of ASB6. We found that ASB6 overexpression increases, whereas ASB6 knockdown decreases, the potential of tumor-sphere formation, colony formation, and expression of Oct-4 and Nanog.
View Article and Find Full Text PDF