A central challenge in global change research is the projection of the future behavior of a system based upon past observations. Tree-ring data have been used increasingly over the last decade to project tree growth and forest ecosystem vulnerability under future climate conditions. But how can the response of tree growth to past climate variation predict the future, when the future does not look like the past? Space-for-time substitution (SFTS) is one way to overcome the problem of extrapolation: the response at a given location in a warmer future is assumed to follow the response at a warmer location today.
View Article and Find Full Text PDFLitterfall dynamics (production, seasonality and nutrient composition) are key factors influencing nutrient cycling. Leaf litter characteristics are modified by species composition, site conditions and water availability. However, significant evidence on how large-scale, global circulation patterns affect ecophysiological processes at tree and ecosystem level remains scarce due to the difficulty in separating the combined influence of different factors on local climate and tree phenology.
View Article and Find Full Text PDF