The cooperation between the actin and microtubule (MT) cytoskeletons is important for cellular processes such as cell migration and muscle cell development. However, a full understanding of how this cooperation occurs has yet to be sufficiently developed. The MT plus-end tracking protein CLIP-170 has been implicated in this actin-MT coordination by associating with the actin-binding signaling protein IQGAP1 and by promoting actin polymerization through binding with formins.
View Article and Find Full Text PDFProper regulation of microtubule (MT) dynamics is critical for cellular processes including cell division and intracellular transport. Plus-end tracking proteins (+TIPs) dynamically track growing MTs and play a key role in MT regulation. +TIPs participate in a complex web of intra- and inter- molecular interactions known as the +TIP network.
View Article and Find Full Text PDFThere is an interest in identifying Anaphase Promoting-Complex/Cyclosome (APC/C) inhibitors that lead to sensitivity to microtubule poisons as a strategy for targeting cancer cells. Using budding yeast Saccharomyces cerevisiae, peptides derived from the Mitotic Arrest Deficient 2 (Mad2)-binding motif of Cell Division Cycle 20 (Cdc20) were observed to inhibit both Cdc20- and CDC20 Homology 1 (Cdh1)-dependent APC/C activity. Over expression of peptides in vivo led to sensitivity to a microtubule poison and, in a recovery from a microtubule poison arrest, delayed degradation of yeast Securin protein Precocious Dissociation of Sisters 1 (Pds1).
View Article and Find Full Text PDFMany cellular processes including cell division and cell migration require coordination between the actin and microtubule (MT) cytoskeletons. This coordination is as-yet poorly understood, but proteins such as formins and IQGAP1 are known to be involved. We show that the MT binding protein EB1 (end-binding protein 1), a key regulator of MT dynamics, can bind directly to filamentous actin (F-actin) F-actin.
View Article and Find Full Text PDF