Publications by authors named "Yueh-Chen Chiang"

Physiological stress induces aversive memory formation and profoundly impacts animal behavior. In C. elegans, concurrent mitochondrial disruption induces aversion to the bacteria that the animal inherently prefers, offering an experimental paradigm for studying the neural basis of aversive memory.

View Article and Find Full Text PDF

SignificancePhysiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival. Mitochondrial disruption, a common physiological stress in diverse species, induces the nematode to avoid non-pathogenic bacteria through a serotonergic neuronal circuit. We find that distinct neurons, communicated through serotonin and a specific serotonin receptor, are required for the formation and retrieval of this learned aversive behavior.

View Article and Find Full Text PDF

Wnt signalling is one of a few conserved pathways that control diverse aspects of development and morphogenesis in all metazoan species. Endocytosis is a key mechanism that regulates the secretion and graded extracellular distribution of Wnt glycoproteins from the source cells, as well as Wnt signal transduction in the receiving cells. However, controversies exist regarding the requirement of clathrin-dependent endocytosis in Wnt signalling.

View Article and Find Full Text PDF

Self-avoidance is a conserved mechanism that prevents crossover between sister dendrites from the same neuron, ensuring proper functioning of the neuronal circuits. Several adhesion molecules are known to be important for dendrite self-avoidance, but the underlying molecular mechanisms are incompletely defined. Here, we show that FMI-1/Flamingo, an atypical cadherin, is required autonomously for self-avoidance in the multidendritic PVD neuron of The mutant shows increased crossover between sister PVD dendrites.

View Article and Find Full Text PDF

Biomolecules that respond to different external stimuli enable the remote control of genetically modified cells. We report herein a sonogenetic approach that can manipulate target cell activities by focused ultrasound stimulation. This system requires an ultrasound-responsive protein derived from an engineered auditory-sensing protein prestin.

View Article and Find Full Text PDF

Tubulin post-translational modifications (PTMs) occur spatiotemporally throughout cells and are suggested to be involved in a wide range of cellular activities. However, the complexity and dynamic distribution of tubulin PTMs within cells have hindered the understanding of their physiological roles in specific subcellular compartments. Here, we develop a method to rapidly deplete tubulin glutamylation inside the primary cilia, a microtubule-based sensory organelle protruding on the cell surface, by targeting an engineered deglutamylase to the cilia in minutes.

View Article and Find Full Text PDF