Publications by authors named "Yuefeng Hao"

Tendinopathy is a disorder characterized by pain and reduced function due to a series of changes in injured or diseased tendons. Inflammation and collagen degeneration are key contributors to the onset and chronic nature of tendinopathy. Acetyl-11-keto-β-boswellic acid (AKBA) is an effective anti-inflammatory agent widely used in chronic inflammatory disorders and holds potential for tendinopathy treatment; however, its therapeutic efficacy is limited by poor aqueous solubility.

View Article and Find Full Text PDF

The primary clinical manifestations of osteoarthritis (OA) are joint pain and restricted movement capabilities. Synovial inflammation, serving as an initiator of OA progression, intensifies cartilage damage via the generation of various deleterious agents, including pro-inflammatory cytokines and nociceptive mediators. Despite extensive research on modulating synovial inflammation to retard OA progression, the underlying pathophysiological mechanisms of synovial inflammation in OA remain elusive.

View Article and Find Full Text PDF

Osteoarthritis (OA) is characterized primarily by the degeneration of articular cartilage, with a high prevalence and disability rate. The functional phenotype of chondrocytes, as the sole cell type within cartilage, is vital for OA progression. Due to the avascular nature of cartilage and its limited regenerative capacity, repair following injury poses significant challenges.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effectiveness of all-suture anchors (ASA) for repairing rotator cuff tears, focusing on their mechanical properties and integration with tendon and bone post-surgery.
  • Research involved mechanical testing, biocompatibility assessments using rat bone marrow stem cells, and analysis of tissue samples from a rabbit model at 4, 8, and 12 weeks after ASA implantation.
  • Results indicated that ASA offers strong mechanical support, integrates well with tendon-bone interfaces over time, and shows potential for excellent biocompatibility, comparable to natural rotator cuff conditions by 12 weeks.
View Article and Find Full Text PDF

Osteoarthritis (OA) is a prevalent cause of joint algesia, loss of function, and disability in adults, with cartilage injury being its core pathological manifestation. Since cartilage damage is non-renewable, the treatment outcome in the middle and late stages of OA is unsatisfactory, which can be minimized by changing lifestyle and other treatment modalities if diagnosed and managed in the early stages, indicating the importance of early diagnosis and monitoring of cartilage injury. Ultrasound technology has been used for timely diagnosis and even cartilage injury treatment, which is convenient and safe for the patient owing to no radiation exposure.

View Article and Find Full Text PDF
Article Synopsis
  • Osteoarthritis (OA) is a chronic condition characterized by the breakdown of cartilage, leading to joint pain and dysfunction.
  • Cathepsins, a group of enzymes involved in protein degradation, are found at elevated levels in OA, but their direct role in causing knee and hip OA has been unclear.
  • This study used advanced statistical methods to show that higher levels of cathepsin O are linked to knee OA risk, while cathepsin H is associated with hip OA, suggesting that different cathepsins could be potential targets for diagnosing and treating OA based on the affected joint.
View Article and Find Full Text PDF

The hot spot temperature of transformer windings is an important indicator for measuring insulation performance, and its accurate inversion is crucial to ensure the timely and accurate fault prediction of transformers. However, existing studies mostly directly input obtained experimental or operational data into networks to construct data-driven models, without considering the lag between temperatures, which may lead to the insufficient accuracy of the inversion model. In this paper, a method for inverting the hot spot temperature of transformer windings based on the SA-GRU model is proposed.

View Article and Find Full Text PDF

Determining the precise course of bacterial infection requires abundant in vivo real-time data. Synchronous monitoring of the bacterial load, temperature, and immune response can satisfy the shortage of real-time in vivo data. Here, we conducted a study in the joint-infected mouse model to synchronously monitor the bacterial load, temperature, and immune response using the second near-infrared (NIR-II) fluorescence imaging, infrared thermography, and immune response analysis for 2 weeks.

View Article and Find Full Text PDF

In situ mesenchymal stem cells (MSCs) regenerative therapy holds promising potential for treating osteoarthritis. However, MSCs engraftment and intra-articular inflammation limit the therapeutic efficacy of this approach. This study introduces porous microspheres (PMs) composed of aldehyde-modified poly(lactic-co-glycolic acid), that encapsulate platelet derived growth factor-AB and kartogenin.

View Article and Find Full Text PDF

Synovial inflammation plays a key role in osteoarthritis (OA) pathogenesis. Fibroblast-like synoviocytes (FLSs) represent a distinct cell subpopulation within the synovium, and their unique phenotypic alterations are considered significant contributors to inflammation and fibrotic responses. The underlying mechanism by which acetyl-11-keto-β-boswellic acid (AKBA) modulates FLS activation remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Artificial grafts are commonly used in treating sports injuries, but their integration with host tissues is hindered by excessive inflammation and limited tissue regeneration.
  • A new multi-layered silk fibroin coating, Cur@Zn@PET, was developed to release curcumin and zinc in a time-controlled manner, targeting both the inflammatory phase and the regeneration phase of healing.
  • In rat studies of ACL reconstruction, Cur@Zn@PET showed promising results, reducing inflammation and fostering new bone growth, suggesting it could enhance the effectiveness of grafts in sports medicine.
View Article and Find Full Text PDF

Exercise prescriptions play a vital role in the prevention and treatment of chronic diseases. A consensus regarding exercise prescription is important for physical health. The "Consensus statement of Chinese experts on exercise prescription" (hereinafter referred to as "Expert Consensus") divides exercise prescription into two categories: fitness exercise prescription and medical exercise prescription.

View Article and Find Full Text PDF

Osteoarthritis (OA) is distinguished by pathological alterations in the synovial membrane, articular cartilage, and subchondral bone, resulting in physical symptoms such as pain, deformity, and impaired mobility. Numerous research studies have validated the effectiveness of low-intensity pulsed ultrasound (LIPUS) in OA treatment. The periodic mechanical waves generated by LIPUS can mitigate cellular ischemia and hypoxia, induce vibration and collision, produce notable thermal and non-thermal effects, alter cellular metabolism, expedite tissue repair, improve nutrient delivery, and accelerate the healing process of damaged tissues.

View Article and Find Full Text PDF

An effective treatment for the irregular partial-thickness cartilage defect in the early stages of osteoarthritis (OA) is lacking. Cartilage tissue engineering is effective for treating full-thickness cartilage defects with limited area. In this study, we designed an injectable multifunctional poly(lactic-co-glycolic acid) (PLGA) microsphere to repair partial-thickness cartilage defects.

View Article and Find Full Text PDF

Tendinopathy is a common disorder that causes local dysfunction and reduces quality of life. Recent research has indicated that alterations in the inflammatory microenvironment play a vital role in the pathogenesis of tendinopathy. Herein, injectable methacrylate gelatin (GelMA) microspheres (GM) were fabricated and loaded with heparin-dopamine conjugate (HDC) and hepatocyte growth factor (HGF).

View Article and Find Full Text PDF

Infrared image processing is an effective method for diagnosing faults in electrical equipment, in which target device segmentation and temperature feature extraction are key steps. Target device segmentation separates the device to be diagnosed from the image, while temperature feature extraction analyzes whether the device is overheating and has potential faults. However, the segmentation of infrared images of electrical equipment is slow due to issues such as high computational complexity, and the temperature information extracted lacks accuracy due to the insufficient consideration of the non-linear relationship between the image grayscale and temperature.

View Article and Find Full Text PDF

Background: Chronic Achilles tendon ruptures (CATR) often require surgical intervention to restore function. Despite numerous treatment modalities available, the optimal management strategy remains controversial given the limited high-quality evidence available. This article aims to provide evidence-based guidelines for the surgical management of CATR through a comprehensive systematic review of the available data.

View Article and Find Full Text PDF

Falls and fall-related injuries in young male adults with excess weight are closely related to an increased cognitive load. Previous research mainly focuses on analyzing the postural control status of these populations performing cognitive tasks while stabilized walking progress but overlooked a specific period of walking known as gait initiation (GI). It is yet unknown the influences of cognitive load on this population's postural control status during GI.

View Article and Find Full Text PDF

Periprosthetic osteolysis (PPO) induced by wear particles at the interface between the prosthesis and bone is a crucial issue of periprosthetic bone loss and implant failure. After wear and tear, granular material accumulates around the joint prosthesis, causing a chronic inflammatory response, progressive osteoclast activation and eventual loosening of the prosthesis. Although many studies have been conducted to address bone loss after joint replacement surgeries, they have not fully addressed these issues.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a prevalent and chronic joint disease that affects the aging population, causing pain and disability. Macrophages in synovium are important mediators of synovial inflammatory activity and pathological joint pain. Previous studies have demonstrated the significant involvement of κ-opioid receptor (KOR) in the regulation of pain and inflammation.

View Article and Find Full Text PDF

Stem cell tissue engineering is a potential treatment for osteoarthritis. However, the number of stem cells that can be delivered, loss of stem cells during injection, and migration ability of stem cells limit applications of traditional stem cell tissue engineering. Herein, kartogenin (KGN)-loaded poly(lactic-co-glycolic acid) (PLGA) porous microspheres is first engineered via emulsification, and then anchored with chitosan through the amidation reaction to develop a new porous microsphere (PLGA-CS@KGN) as a stem cell expansion vector.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage injury, hyperplasia of bone and inflammatory lesions of synovium. Monoacylglycerol lipase (MAGL), a member of the α/β hydrolase superfamily, is involved in regulation of injury protection and immune-inflammation response. Autoinflammatory response of the synovium and the release of inflammatory mediators play critical roles in occurrence of early-stage OA.

View Article and Find Full Text PDF

Background: Ferroptosis is an iron-related form of programmed cell death. Accumulating evidence has identified the pathogenic role of ferroptosis in multiple orthopedic disorders. However, the relationship between ferroptosis and SONFH is still unclear.

View Article and Find Full Text PDF

As a common joint disease, osteoarthritis (OA) is often associated with chronic pain. Synovial inflammation is correlated with OA progression and pain. Synovial inflammation can produce a series of destructive substances, such as inflammatory factors and pain mediators, which aggravate cartilage injury and further accelerate the progression of OA.

View Article and Find Full Text PDF