Publications by authors named "Yuefeng Guan"

Symbiotic nitrogen fixation (SNF) in legume-rhizobia serves as a sustainable source of nitrogen (N) in agriculture. However, the addition of inorganic N fertilizers significantly inhibits SNF, and the underlying mechanisms remain not-well understood. Here, we report that inorganic N disrupts iron (Fe) homeostasis in soybean nodules, leading to a decrease in SNF efficiency.

View Article and Find Full Text PDF

Symbiotic nodules comprise two classes, indeterminate and determinate, defined by the presence/absence of apical meristem and developmental zonation. Why meristem and zonation are absent from determinate nodules remains unclear. Here, we define cell types in developing soybean nodules, highlighting the undifferentiated infection zones and differentiated nitrogen-fixation zones.

View Article and Find Full Text PDF

Unlabelled: Phytic acid (PA) in grain seeds reduces the bioavailability of nutrient elements in monogastric animals, and an important objective for crop seed biofortification is to decrease the seed PA content. Here, we employed CRISPR/Cas9 to generate a PA mutant population targeting PA biosynthesis and transport genes, including two () and three (). We characterized a variety of lines containing mutations on multiple and genes.

View Article and Find Full Text PDF

Legume symbiotic nitrogen fixation (SNF) is suppressed by inorganic nitrogen (N) in the soil. High N inhibition of nitrogenase activity is associated with the deprivation of carbon allocation and metabolism in nodules. However, the underlying molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Symbiotic nitrogen fixation in legume nodules requires substantial energy investment from host plants, and soybean (Glycine max (L.) supernodulation mutants show stunting and yield penalties due to overconsumption of carbon sources. We obtained soybean mutants differing in their nodulation ability, among which rhizobially induced cle1a/2a (ric1a/2a) has a moderate increase in nodule number, balanced carbon allocation, and enhanced carbon and nitrogen acquisition.

View Article and Find Full Text PDF

Symbiotic nitrogen fixation is an energy-intensive process, to maintain the balance between growth and nitrogen fixation, high concentrations of nitrate inhibit root nodulation. However, the precise mechanism underlying the nitrate inhibition of nodulation in soybean remains elusive. In this study, CRISPR-Cas9-mediated knockout of GmNLP1 and GmNLP4 unveiled a notable nitrate-tolerant nodulation phenotype.

View Article and Find Full Text PDF

Objectives: Soybean is an important feed and oil crop in the world due to its high protein and oil content. China has a collection of more than 43,000 soybean germplasm resources, which provides a rich genetic diversity for soybean breeding. However, the rich genetic diversity poses great challenges to the genetic improvement of soybean.

View Article and Find Full Text PDF

Soybean is a photoperiod-sensitive short-day crop whose reproductive period and yield are markedly affected by day-length changes. Seed weight is one of the key traits determining the soybean yield; however, the prominent genes that control the final seed weight of soybean and the mechanisms underlying the photoperiod's effect on this trait remain poorly understood. In this study, we identify SW19 as a major locus controlling soybean seed weight by QTL mapping and determine Dt1, an orthologous gene of Arabidopsis TFL1 that is known to govern the soybean growth habit, as the causal gene of the SW19 locus.

View Article and Find Full Text PDF

Legume nodulation requires light perception by plant shoots and precise long-distance communication between shoot and root. Recent studies have revealed that TGACG-motif binding factors (GmSTFs) integrate light signals to promote root nodulation; however, the regulatory mechanisms underlying nodule formation in changing light conditions remain elusive. Here, we applied genetic engineering, metabolite measurement, and transcriptional analysis to study soybean (Glycine max) nodules.

View Article and Find Full Text PDF

Legumes can utilize atmospheric nitrogen via symbiotic nitrogen fixation, but this process is inhibited by high soil inorganic nitrogen. So far, how high nitrogen inhibits N fixation in mature nodules is still poorly understood. Here we construct a co-expression network in soybean nodule and find that a dynamic and reversible transcriptional network underlies the high N inhibition of N fixation.

View Article and Find Full Text PDF

The gene networks surrounding Nod factor receptors that govern the symbiotic process between legumes and rhizobia remain largely unexplored. Here, we identify 13 novel GmNFR1α-associated proteins by yeast two-hybrid screening, and describe a potential interacting protein, GmBI-1α. GmBI-1α had the highest positive correlation with GmNFR1α in a co-expression network analysis, and its expression at the mRNA level in roots was enhanced by rhizobial infection.

View Article and Find Full Text PDF

Unlabelled: Soybean is one of the most versatile crops for oil production, human diets, and feedstocks. The vegetative biomass of soybean is an important determinant of seed yield and is crucial for the forage usages. However, the genetic control of soybean biomass is not well explained.

View Article and Find Full Text PDF

Pod shattering can lead to devastating yield loss of soybean and has been a negatively selected trait in soybean domestication and breeding. Nevertheless, a significant portion of soybean cultivars are still pod shattering-susceptible, limiting their regional and climatic adaptabilities. Here we performed genetic diagnosis on the shattering-susceptible trait of a national registered cultivar, Huachun6 (HC6), and found that HC6 carries the susceptible genotype of a candidate () gene, which exists in a significant portion of soybean cultivars.

View Article and Find Full Text PDF

Crop breeding during the Green Revolution resulted in high yields largely due to the creation of plants with semi-dwarf architectures that could tolerate high-density planting. Although semi-dwarf varieties have been developed in rice, wheat and maize, none was reported in soybean (Glycine max), and few genes controlling plant architecture have been characterized in soybean. Here, we demonstrate that the auxin efflux transporter PINFORMED1 (GmPIN1), which determines polar auxin transport, regulates the leaf petiole angle in soybean.

View Article and Find Full Text PDF

Nodule Inception (NIN) is one of the most important root nodule symbiotic genes as it is required for both infection and nodule organogenesis in legumes. Unlike most legumes with a sole NIN gene, there are four putative orthologous NIN genes in soybean (Glycine max). Whether and how these NIN genes contribute to soybean-rhizobia symbiotic interaction remain unknown.

View Article and Find Full Text PDF

As the major contributors to the floral odors of tea products, terpenoid volatiles play critical roles in the defense response of plants to multiple stresses. Until now, only a few genes in tea plants () have been functionally validated. In this study, by comparative studies conducted at gene, protein, and metabolite levels during oolong tea processing, we isolated an ocimene synthase gene, , which displays a low similarity to previously characterized tea ocimene synthases.

View Article and Find Full Text PDF

To overcome nitrogen deficiency, legume roots establish symbiotic interactions with nitrogen-fixing rhizobia that are fostered in specialized organs (nodules). Similar to other organs, nodule formation is determined by a local maximum of the phytohormone auxin at the primordium site. However, how auxin regulates nodule development remains poorly understood.

View Article and Find Full Text PDF

Background: Plant papain-like cysteine proteases (PLCPs) are a large class of proteolytic enzymes and play important roles in root nodule symbiosis (RNS), while the whole-genome studies of PLCP family genes in legume are quite limited, and the roles of Glycine max PLCPs (GmPLCPs) in nodulation, nodule development and senescence are not fully understood.

Results: In the present study, we identified 97 GmPLCPs and performed a genome-wide survey to explore the expansion of soybean PLCP family genes and their relationships to RNS. Nineteen paralogous pairs of genomic segments, consisting of 77 GmPLCPs, formed by whole-genome duplication (WGD) events were identified, showing a high degree of complexity in duplication.

View Article and Find Full Text PDF

Soybean accounts for more than half of the global production of oilseed and more than a quarter of the protein used globally for human food and animal feed. Soybean domestication involved parallel increases in seed size and oil content, and a concomitant decrease in protein content. However, science has not yet discovered whether these effects were due to selective pressure on a single gene or multiple genes.

View Article and Find Full Text PDF

The output of genetic mutant screenings in soya bean [Glycine max (L.) Merr.] has been limited by its paleopolypoid genome.

View Article and Find Full Text PDF

Phosphoglycerate kinase (PGK) is a highly conserved reversible enzyme that participates in both glycolysis and photosynthesis. In Arabidopsis thaliana, one cytosolic PGK (PGKc) and two plastidial PGKs (PGKp) are known. It remains debatable whether the two PGKp isozymes are functionally redundant or specialized in plastidial carbon metabolism and fixation.

View Article and Find Full Text PDF

As a universal energy generation pathway utilizing carbon metabolism, glycolysis plays an important housekeeping role in all organisms. Pollen tubes expand rapidly via a mechanism of polarized growth, known as tip growth, to deliver sperm for fertilization. Here, we report a novel and surprising role of glycolysis in the regulation of growth polarity in Arabidopsis pollen tubes via impingement of Rho GTPase-dependent signaling.

View Article and Find Full Text PDF

Postoperative infection associated with medical implants is a devastating complication of orthopedic surgery. Considering the difficulties for the diagnosis and treatment of infection, coating the implant material with antibacterial substances is a promising protocol by which to avoid such an adverse reaction. Nanoparticles (NPs) constructed of anatase microspheres, one form of titanium dioxide (TiO), with a high specific surface area are fabricated in this study in a facile one-step process using homogeneous precipitation at 90 °C under atmospheric pressure using titanium sulfate (Ti[SO]) and urea as the titanium source and precipitant, respectively.

View Article and Find Full Text PDF