ACS Appl Mater Interfaces
January 2020
For effective treatment of ischemic cerebral thrombosis, it is of great significance to find a facile way in assessing the early damage of blood-brain barrier (BBB) after ischemic stroke during thrombolysis by integrating thrombolytic agents with fluorescent materials. Herein, a novel type of protein-carbon dot nanohybrids is reported by the incorporation of carbon dots on thrombolytic agents through covalent linkage. Both in vitro and ex vivo fluorescence imaging measurements have demonstrated remarkable imaging effects in the brain of transient middle cerebral artery occlusion mice.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2018
Emphasis using phototheranostics has been placed on the construction of multifunctional nanoplatforms for simultaneous tumor diagnosis and therapy. Herein, we put forth a novel nanosized luminescent material using the incorporation of red emissive carbon dots on gold nanorods through polyethylene glycol as a covalent linkage for dual-modal imaging and photothermal therapy. The novel nanohybrids, not only retain the optical properties of the gold nanorod and carbon dots, but also possess superior imaging performance in both confocal laser scanning microscopy and fluorescence lifetime imaging microscopy.
View Article and Find Full Text PDFIn this work, we synthesized a hypoxia responsive upconversion nanosensor by the conjugation of oxygen insensitive upconversion carbon dots (CDs) with an oxygen sensitive ruthenium(ii) complex (Rudb). The CD-Rudb conjugate was then PEGylated to mediate the formation of nano-sized assemblies of the resultant polymer probe (CD-Ru-mPEG) in aqueous solution. The strategy allows the oxygen sensitive probe (Rudb) to be excited by NIR irradiation and achieve upconverted emission through the Förster resonance energy transfer process from the CDs.
View Article and Find Full Text PDFA novel mesoporous "shell-in-shell" structured nanocatalyst (@Pd/meso-TiO2/Pd@meso-SiO2) with large surface area, enhanced synergy, and improved catalytic performance is created for catalyzing Suzuki-Miyaura coupling and 4-nitrophenol reduction reactions.
View Article and Find Full Text PDF