Publications by authors named "Yuefan Yang"

Introduction: Microglia play pivotal roles in post-intracerebral hemorrhage (ICH) neural injury. Iron metabolism, which is dysregulated after ICH, participates in microglial dysfunction. Previous studies have shown that iron metabolism-related lipocalin-2 (LCN2) is involved in regulating microglial function following ICH.

View Article and Find Full Text PDF

Objectives: Ultrasound guidance endoscopic surgery (ES) has been widely used in the treatment of cerebral hemorrhage in recent years, but relevant research articles are still scarce. Our study aims to investigate the effect of ES compared with conventional craniotomy (CC) on the postoperative complications, and prognosis of patients with intracerebral hemorrhage.

Materials And Methods: The clinical data of 1201 patients with ICH treated in our hospital from January 2017 to January 2020 were collected.

View Article and Find Full Text PDF

Nanobodies (Nbs) are widely used in immunoassays with the advantages of small size and high stability. Here, the nanobody employed as the surrogate of aflatoxin antigen and the recognition mechanism of antiaflatoxin mAb with nanobody was studied by molecular modeling, which verified the feasibility of Nbs as antigen substitutes. On this basis, a nanobody-alkaline phosphatase fusion protein (Nb-AP) was constructed, and a highly sensitive "on-off-on" fluorescent immunosensor (OFO-FL immunosensor) based on the calcein/Ce system was developed for aflatoxin quantification.

View Article and Find Full Text PDF

Deregulation of lemur tyrosine kinase 2 (LMTK2) is a vital determinant for the onset and progression of malignancies, yet the relationship between LMTK2 and glioblastoma (GBM) is undetermined. This study was carried out to determine the relevance of LMTK2 in GBM. Initiating investigation by assessing The Cancer Genome Atlas (TCGA) data showed LMTK2 mRNA levels were decreased in GBM tissue.

View Article and Find Full Text PDF

An NAD-dependent deacetylase called Sirtuin 3 (Sirt3) is involved in the metabolic processes of the mitochondria, including energy generation, the tricarboxylic acid cycle, and oxidative stress. Sirt3 activation can slow down or prevent mitochondrial dysfunction in response to neurodegenerative disorders, demonstrating a strong neuroprotective impact. The mechanism of Sirt3 in neurodegenerative illnesses has been elucidated over time; it is essential for neuron, astrocyte, and microglial function, and its primary regulatory factors include antiapoptosis, oxidative stress, and the maintenance of metabolic homeostasis.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is a devastating stroke type with high mortality and disability. Inflammatory response induced by macrophages/microglia (M/Ms) activation is one of the leading causes of brain damage after ICH. The anti-inflammatory effects of resveratrol (RSV) have already been evaluated in several models of central nervous system disease.

View Article and Find Full Text PDF

The pathophysiological process of neuronal injury due to cerebral ischemia is complex among which disturbance of calcium homeostasis and autophagy are two major pathogenesis. However, it remains ambiguous whether the two factors are independent. Stromal interaction molecule 1 (STIM1) is the most important Ca sensor mediating the store-operated Ca entry (SOCE) through interacting with Orai1 and has recently been proven to participate in autophagy in multiple cells.

View Article and Find Full Text PDF
Article Synopsis
  • Intracerebral hemorrhage (ICH) leads to significant health complications, but effective treatments are scarce; this study investigates the effects of pulsed electromagnetic field (PEMF) therapy in a mouse model of ICH.
  • PEMF was administered shortly after ICH and daily for a week, resulting in a notable reduction in hematoma volume and proinflammatory factors compared to untreated mice.
  • The study suggests PEMF enhances microglial phagocytosis through the CD36 pathway, contributing to improved neurological outcomes by promoting hematoma clearance and reducing inflammation.
View Article and Find Full Text PDF

Introduction: Intracerebral hemorrhage (ICH) causes devastating morbidity and mortality, and studies have shown that the toxic components of hematomas play key roles in brain damage after ICH. Recent studies have found that TLR9 participates in regulating the phagocytosis of peripheral macrophages. The current study examined the role of TLR9 in macrophage/microglial (M/M) function after ICH.

View Article and Find Full Text PDF

Neuroinflammation is one of the most important pathological processes following brain ischemia. Pulsed electromagnetic fields (PEMFs) protect against brain ischemia, but their role in regulating neuroinflammation remains unclear. In the present study, we investigated the biological effects of PEMF exposure on brain ischemia-induced neuroinflammation through the astrocytic cholinergic anti-inflammatory pathway.

View Article and Find Full Text PDF

Background: Inflammation contributes to the poor prognosis of intracerebral hemorrhage (ICH). Intermittent fasting (IF) has been shown to be protective against inflammation in multiple pathogenic processes. In the present study, we aimed to investigated the beneficial effects of IF in attenuating neuroinflammation and neurological deficits in a mouse model of ICH and to investigate the underlying mechanism.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a major public health concern all around the world. Accumulating evidence suggests that pathological processes after brain injury continuously evolve. Here, we identified the differentially expressed proteins (DEPs) and differentially expressed phosphoproteins (DEPPs) in the early and late stages of TBI in mice using TMT labeling, enrichment of Phos affinity followed, and high-resolution LC-MS/MS analysis.

View Article and Find Full Text PDF

Objective: Studies have shown that the therapeutic effects of mesenchymal stem cells (MSCs) are mediated in a paracrine manner, mainly through extracellular vesicles such as exosomes. Here, we designed a study to investigate whether exosomes derived from adipose-derived mesenchymal stem cells (ADMSC-Exos) had protective effects in a rat model of radiation-induced brain injury and in microglia.

Methods: Male adult Sprague-Dawley (SD) rats were randomly divided into three groups: the control group, the radiation group (30 Gy), and the radiation + exosomes group (30 Gy + 100 ug exosomes).

View Article and Find Full Text PDF

Antibiotics affect gut microbial composition, leading to Gut-Brain-Axis imbalance and neurobehavioral changes. However, the intestinal dysbacteriosis associated behavior changes are not consistently reported. It is not clear whether these changes are transient or permanent.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is common and often fatal in current times. The role of poly(adenosine diphosphate-ribose) polymerase (PARP)-induced cell death (parthanatos) in TBI has not been well studied. Our past study showed that oxidative stress-induced cell death includes parthanatos by confirming the occurrence of PARP activation and nuclear translocation of apoptosis-inducing factor (AIF).

View Article and Find Full Text PDF

Traumatic brain injury (TBI) has become a major health concern worldwide, and the poor outcome of TBI increases the need for therapeutic improvement. Secondary injuries following TBI, including excitotoxicity, lead to synaptic dysfunction and provide potential targets for intervention. Postsynaptic scaffold proteins, which are involved in the regulation of excitotoxicity after neuronal injury, play a crucial role in modulating synaptic function.

View Article and Find Full Text PDF

Growing evidence has shown that pulsed electromagnetic fields (PEMF) can modulate bone metabolism in vivo and regulate the activities of osteoblasts and osteoclasts in vitro. Osteocytes, accounting for 95% of bone cells, act as the major mechanosensors in bone for transducing external mechanical signals and producing cytokines to regulate osteoblastic and osteoclastic activities. Targeting osteocytic signaling pathways is becoming an emerging therapeutic strategy for bone diseases.

View Article and Find Full Text PDF

Background And Objective: Adverse early-life experiences have been suggested as one of the key contributors to neurodevelopmental disorders, such that these experiences influence brain development, cognitive ability and mental health. Previous studies indicated that hippocampal levels of the calcium-binding proteins calretinin (CALR) and calbindin-D28k (CALB) changed in response to maternal deprivation (MD), a model for adverse early-life experiences. We investigated the effects of MD on hippocampal CALR and CALB protein levels and cognitive behaviors, and explored whether these effects were sex-related.

View Article and Find Full Text PDF

Background/aims: Autophagy is essential for maintaining cellular homeostasis and the survival of terminally differentiated cells as neurons. In this study, we aim to investigate whether mitofusin 2, a mitochondrial fusion protein, mediates autophagy in cerebral ischemia/reperfusion (I/R) injury.

Methods: Primary cultured neurons were treated with oxygen-glucose deprivation/reperfusion to mimic cerebral I/R injury in vitro.

View Article and Find Full Text PDF

Pulsed electromagnetic fields (PEMF) have been proven to be effective for promoting bone mass and regulating bone turnover both experimentally and clinically. However, the exact mechanisms for the regulation of PEMF on osteoclastogenesis as well as optical exposure parameters of PEMF on inhibiting osteoclastic activities and functions remain unclear, representing significant limitations for extensive scientific application of PEMF in clinics. In this study, RAW264.

View Article and Find Full Text PDF

Glutamate induced excitotoxicity is common in diverse neurological disorders. RNF146 as an E3 ubiquitin ligase protects neurons against excitotoxicity interfering with Poly (ADP-ribose) (PAR) polymer-induced cell death (parthanatos). However, the neuroprotective role of RNF146 has not been fully understood.

View Article and Find Full Text PDF

Glutamate-induced excitotoxicity is common in the pathogenesis of many neurological diseases. A pulsed electromagnetic field (PEMF) exerts therapeutic effects on the nervous system, but its specific mechanism associated with excitotoxicity is still unknown. We investigated the role of PEMF exposure in regulating glutamate-induced excitotoxicity through the endocannabinoid (eCB) system.

View Article and Find Full Text PDF

Erythrolysis occurs in the clot after intracerebral hemorrhage (ICH), and the release of hemoglobin causes brain injury, but it is unclear when such lysis occurs. The present study examined early erythrolysis in rats. ICH rats had an intracaudate injection of 100 μl autologous blood, and sham rats had a needle insertion.

View Article and Find Full Text PDF

Calcium disequilibrium is extensively involved in oxidative stress-induced neuronal injury. Although Homer1a is known to regulate several neuronal calcium pathways, its effects on, or its exact relationship with, oxidative stress-induced neuronal injury has not yet been fully elucidated. We found that Homer1a protected HT-22 cells from glutamate-induced oxidative stress injury by inhibiting final-phase intracellular calcium overload and mitochondrial oxidative stress.

View Article and Find Full Text PDF