Multi-signal-based self-calibrating biosensors have become a research focus due to their superior accuracy and sensitivity in recent years. Herein, the potential-resolved differential ECL immunoassay based on dual co-reactants regulation was developed. Meso-tetra(4-carboxyphenyl)porphyrin (TCPP) functionalized zirconium dioxide (ZrO) composites (TCPP-ZrO) was first synthesized using TCPP as the luminophore and ZrO as the enhancer and stabilizer.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2020
The electronic Raman scattering (ERS) features of single-walled carbon nanotubes (SWNTs) can reveal a wealth of information about their electronic structures. Previously, the ERS processes have been exclusively reported in metallic SWNTs (M-SWNTs) and attributed to the inelastic scattering of photoexcited excitons by a continuum of low-energy electron-hole pairs near the Fermi level. Therefore, the ERS features have been thought to appear exclusively in M-SWNTs but not in semiconducting SWNTs (S-SWNTs), which are more desired in many application fields such as nanoelectronics and bioimaging.
View Article and Find Full Text PDFThe chirality (n,m) determines all structures and properties of a single-walled carbon nanotube (SWNT), therefore, accurate and convenient (n,m) assignments are vital in nanotube-related science and technology. Previously, a so-called Kataura plot that protracts the excitonic transition energies (E's) of SWNTs with various (n,m) with respect to the tube diameter (d) has been widely utilized by researchers in the nanotube community for all (n,m)-related studies. However, the facts that both E and the calculated d are subject to interactions with the environments make it inconvenient to accurately determine the (n,m) under complex environments.
View Article and Find Full Text PDF