Objectives: To explore the effectiveness of radiographic biomarkers on transition area (TA)-the grayscale gradient zone from carious lesion to normal dentine on radiographs-for identifying deep caries/reversible pulpitis and chronic pulpitis via diagnostic model analysis.
Methods: This retrospective study included 392 caries cases. Canny edge detection was used to define the TA region.
Electrophysiological recordings of neurons in deep brain regions using optogenetic stimulation are essential to understanding and regulating the role of complex neural activity in biological behavior and cognitive function. Optogenetic techniques have significantly advanced neuroscience research by enabling the optical manipulation of neural activities. Because of the significance of the technique, constant advancements in implantable optrodes that integrate optical stimulation with low-noise, large-scale electrophysiological recording are in demand to improve the spatiotemporal resolution for various experimental designs and future clinical applications.
View Article and Find Full Text PDFBackground: CD83 are closely related to the pathogenesis of immune thrombocytopenia (ITP), but the exact mechanism remains unclear.
Aim: To explore the relationship between CD83 and CD4 T cell subsets and clarify the role of CD83 in the pathogenesis of ITP.
Methods: RT-qPCR and Flow cytometry were used to illustrate CD83 expression.
Background: Cardiotoxicity has been corroborated to be the toxic influence of cisplatin (CDDP). Oxidative stress and cardiomyocyte apoptosis play a vital part in cardiotoxicity induced by CDDP. Salvianolic acid Salvianolic acid B (SalB) is a monomeric component of Salvia miltiorrhiza, which has antioxidant and anti-inflammatory influences.
View Article and Find Full Text PDFThis work presents highly responsive gate-controlled p-GaN/AlGaN/GaN ultraviolet photodetectors (UVPDs) on Si substrates with a high-transmittance ITO gate. The two-dimensional electron gas (2DEG) in the quantum well of the polarized AlGaN/GaN heterojunction was efficiently depleted by the p-GaN gate, leading to a high photo-to-dark current ratio (PDCR) of 3.2 × 10.
View Article and Find Full Text PDFGaAs-based oxide-confined vertical-cavity surface-emitting lasers (VCSELs) exhibit relatively low resistance against reliability-related damage. In order to gain a deeper understanding of the degradation and failure mechanism in oxide-confined VCSELs caused by electrostatic discharge (ESD)-induced defect proliferation, we investigated the effects of ESD stress on the degradation of optical-electrical characteristics and the evolution of defects in VCSELs under human body model test condition. The degradation threshold values for forward and reverse ESD pulse amplitudes were estimated to be 200 V and -50 V, respectively.
View Article and Find Full Text PDFThe conventional dose of recombinant human thrombopoietin (rhTPO) in the treatment of immune thrombocytopenia (ITP) is 300 U/kg per day, but the clinical reaction rate is not satisfactory. Accordingly, we explored the efficacy and safety of increasing rhTPO dose in the treatment of ITP. A retrospective study was conducted to collect the clinical data of 105 ITP patients who were divided into two groups, a low-dose group (15 000 U/day) and a high-dose group (30 000 U/day) according to the dose of rhTPO.
View Article and Find Full Text PDFIn the field of diamond MESFETs, this work is what we believe to be the first to investigate the optoelectronic properties of hydrogen-terminated polycrystalline diamond MESFETs under visible and near-UV light irradiation. It is shown that the diamond MESFETs are well suited for weak light detection in the near-ultraviolet region around the wavelength of 368 nm, with a responsivity of 6.14 × 10 A/W and an external quantum efficiency of 2.
View Article and Find Full Text PDFOptrodes, which are single shaft neural probes integrated with microelectrodes and optical light sources, offer a remarkable opportunity to simultaneously record and modulate neural activities using light within an animal's brain; however, a common problem with optrodes is that stimulation artifacts can be observed in the neural recordings of microelectrodes when the light source on the optrode is activated. These stimulation artifacts are undesirable contaminants, and they cause interpretation complexity when analyzing the recorded neural activities. In this paper, we tried to mitigate the effects of the stimulation artifacts by developing a low-noise, double-sided optrode integrated with multiple Electromagnetic Shielding (EMS) layers.
View Article and Find Full Text PDFWater splitting for yielding high-purity hydrogen represents the ultimate choice to reduce carbon dioxide emission owing to the superior energy density and zero-pollution emission after combustion. However, the high electricity consumption and requirement of large quantities of pure water impede its large-scale application. Here, a triboelectric nanogenerator (W-TENG) converting offshore wind energy into electricity is proposed for commercial electric energy saving and cost reduction.
View Article and Find Full Text PDFMicromachines (Basel)
July 2022
Traditional GaAs-based frequency multipliers still exhibit great challenges to meet the demand for solid-state high-power THz sources due to low breakdown voltage and heat dissipation of the Schottky barrier diode (SBD). In this study, a GaN SBD chain was fabricated with n/n-GaN structure. As a consequence, the breakdown voltage of 54.
View Article and Find Full Text PDFObjective: To assess the association between three-dimensional inclination of the osseous structures of temporomandibular joints (TMJ) and the risk of disc displacement (DD).
Methods: The 120 TMJs of 60 patients were evaluated. According to magnetic resonance images, disc position was classified as normal, anterior DD with reduction (ADDWR) and without reduction (ADDWoR) and as normal, medial DD (MDD), and lateral DD (LDD) on the sagittal and coronal views, respectively.
A self-charging power system harvesting random and low-frequency wave energy into electricity provides a promising strategy for the construction of smart oceans. However, the system faces huge challenges of easy corrosion in the marine environment and the utilization of toxic organic electrolytes in energy storage devices. To address the issues above, a seawater supercapacitor (SWSC) for the marine self-charging power system is rationally proposed by using a conductive polymer, polypyrrole with hollow morphology (h-PPy), to enhance the stability and capacitance while using seawater as an eco-friendly electrolyte to reduce the cost and achieve sustainability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2022
The liquid-solid triboelectric nanogenerator is broadly studied for its self-powered sensing and blue energy harvesting, thanks to its low wear and highly efficient contact. However, the corresponding research studies focusing on deionized-water liquid-solid triboelectric nanogenerators (DL-TENGs) and seawater-type liquid-solid TENGs (SL-TENGs) are rarely being carried out at present. Here, a SL-TENG is fabricated by applying a dielectric film as the organic coating and coated and uncoated steel hull as the two electrodes.
View Article and Find Full Text PDFTriboelectric nanogenerator (TENG) has presented the huge potential application in distributed energy field which can realize the conversion from dispersed mechanical energy to electric energy. However, the natural characteristic of pulse output for conventional TENG, which means high crest factor, is defective for directly driving electronics. Here, a strategy to convert the pulse alternate current of TENG into a direct current with low crest factor is achieved through introducing a phase difference design into the structure of TENG.
View Article and Find Full Text PDFIntegrated optrodes for optogenetics have been becoming a significant tool in neuroscience through the combination of offering accurate stimulation to target cells and recording biological signals simultaneously. This makes it not just be widely used in neuroscience researches, but also have a great potential to be employed in future treatments in clinical neurological diseases. To optimize the integrated optrodes, this paper aimed to investigate the influence of surface material and illumination upon the performance of the microelectrode/electrolyte interface and build a corresponding evaluation system.
View Article and Find Full Text PDFThe rapid development of Internet of Things and artificial intelligence brings increasing attention on the harvesting of distributed energy by using triboelectric nanogenerator (TENG), especially the direct current TENG (DC-TENG). It is essential to select appropriate triboelectric materials for obtaining a high performance TENG. In this work, we provide a set of rules for selecting the triboelectric materials for DC-TENG based on several basic parameters, including surface charge density, friction coefficient, polarization, utilization rate of charges, and stability.
View Article and Find Full Text PDFOral Surg Oral Med Oral Pathol Oral Radiol
May 2021
Objective: The objective of this study was to compare the diagnostic performance of magnetic resonance imaging (MRI) and computed tomography (CT) in differentiating pleomorphic adenomas from Warthin tumors using radiomics.
Study Design: We retrospectively reviewed 626 patients who underwent preoperative MRI or CT for parotid tumor diagnosis. Patient groups were balanced by propensity score matching (PSM) and 123 radiomic features were extracted from tumor images.
Objectives: To explore the effectiveness of magnetic resonance image (MRI)-based biomarkers for identifying benign and malignant parotid tumors via diagnostic model analysis.
Methods: This retrospective study included 109 patients (development cohort and validation cohort) who underwent MRI preoperatively, including T1- and T2-weighted images. Parameters based on 2D or 3D texture analysis were extracted from tumor lesions by MaZda software, fisher discriminant and bootstrap method were used to perform parameter reduction, diagnostic models with the selected biomarkers were established along with clinical data, model performance (discrimination and calibration) was furtherly evaluated by internal and external validation, decision curve analysis was applied to measure the improvement of clinical benefits.
An ocean wave contains various marine information, but it is generally difficult to obtain the high-precision quantification to meet the needs of ocean development and utilization. Here, we report a self-powered and high-performance triboelectric ocean-wave spectrum sensor (TOSS) fabricated using a tubular triboelectric nanogenerator (TENG) and hollow ball buoy, which not only can adapt to the measurement of ocean surface water waves in any direction but also can eliminate the influence of seawater on the performance of the sensor. Based on the high-sensitivity advantage of TENG, an ultrahigh sensitivity of 2530 mV mm (which is 100 times higher than that of previous work) and a minimal monitoring error of 0.
View Article and Find Full Text PDFCore-shell-structured BaTiO-poly( tert-butyl acrylate) (P tBA) nanoparticles are successfully prepared by in situ atom transfer radical polymerization of tert-butyl acrylate ( tBA) on BaTiO nanoparticle surface. The thickness of the P tBA shell layer could be controlled by adjusting the feed ratio of tBA to BaTiO. The BaTiO-P tBA nanoparticles are introduced into poly(vinylidene fluoride) (PVDF) matrix to form a BaTiO-P tBA/PVDF nanocomposite.
View Article and Find Full Text PDFThe regeneration of mineral crystals under physiological conditions is an efficient way to repair defects in hard tissues. To achieve robust mineralization on surfaces such as the tooth enamel, an inducer requires strong affinity with the substrates and should be able to induce mineralization. Thus far, most studies used a single molecule containing two components to realize the above functions separately, which might be troublesome to synthesize and purify.
View Article and Find Full Text PDFIn recent years, people pay more attention to the protection against chemical warfare agents, due to the increase in the probability of usage of these chemical warfare agents in wars or terrorist attacks. In this work, MgO nanoparticles were in-situ growth on the surface of poly(m-phenylene Isophthalamide) (PMIA) forming a flexible and breathable fabric for the detoxification of mustard gas surrogate. The as-prepared nanofibrous membrane possesses a "flower-like" structure of which endows not only increase the specific surface area of the composite but also prevent the agglomeration of the MgO nanoparticles.
View Article and Find Full Text PDFBroadening the application area of the triboelectric nanogenerators (TENGs) is one of the research emphases in the study of the TENGs, whose output characteristic is high voltage with low current. Here we design a self-powered electrospinning system, which is composed of a rotating-disk TENG (R-TENG), a voltage-doubling rectifying circuit (VDRC), and a simple spinneret. The R-TENG can generate an alternating voltage up to 1400 V.
View Article and Find Full Text PDF