Publications by authors named "Yue-xiao Shen"

1,4-Dioxane concentration in most contaminated water is much less than 1 mg/L, which cannot sustain the growth of most reported 1,4-dioxane-metabolizing pure cultures. These pure cultures were isolated following enrichment of mixed cultures at high concentrations (20 to 1,000 mg/L). This study is based on a different strategy: 1,4-dioxane-metabolizing mixed cultures were enriched by periodically spiking 1,4-dioxane at low concentrations (≤1 mg/L).

View Article and Find Full Text PDF

Solar-driven bioelectrosynthesis represents a promising approach for converting abundant resources into value-added chemicals with renewable energy. Microorganisms powered by electrochemical reducing equivalents assimilate CO, HO, and N building blocks. However, products from autotrophic whole-cell biocatalysts are limited.

View Article and Find Full Text PDF

Catalytic CO conversion to renewable fuel is of utmost importance to establish a carbon-neutral society. Bioelectrochemical CO reduction, in which a solid cathode interfaces with CO-reducing bacteria, represents a promising approach for renewable and sustainable fuel production. The rational design of biocatalysts in the biohybrid system is imperative to effectively reduce CO into valuable chemicals.

View Article and Find Full Text PDF

Combined organic and inorganic fouling is a primary barrier constraining the performance of reverse osmosis (RO) membrane. In this work, we conducted a systematic study focusing on the synergetic fouling effects of silica and humic acid (HA) in RO process, and found the critical silica concentration where the fouling pattern changed qualitatively. When the silica concentration was lower than 6 mM at a typical HA concentration of 50 mg·L, no severe fouling was observed, while silica reaching this critical point could cause severe synergetic fouling with HA.

View Article and Find Full Text PDF

Biological membranes are ideal for separations as they provide high permeability while maintaining high solute selectivity due to the presence of specialized membrane protein (MP) channels. However, successful integration of MPs into manufactured membranes has remained a significant challenge. Here, we demonstrate a two-hour organic solvent method to develop 2D crystals and nanosheets of highly packed pore-forming MPs in block copolymers (BCPs).

View Article and Find Full Text PDF

Artificial water channels are synthetic molecules that aim to mimic the structural and functional features of biological water channels (aquaporins). Here we report on a cluster-forming organic nanoarchitecture, peptide-appended hybrid[4]arene (PAH[4]), as a new class of artificial water channels. Fluorescence experiments and simulations demonstrated that PAH[4]s can form, through lateral diffusion, clusters in lipid membranes that provide synergistic membrane-spanning paths for a rapid and selective water permeation through water-wire networks.

View Article and Find Full Text PDF

The original version of this Article contained an error in the spelling of the author Woochul Song, which was incorrectly given as Woochul C. Song. This has been corrected in both the PDF and HTML versions of the Article.

View Article and Find Full Text PDF

As water availability becomes a growing challenge in various regions throughout the world, desalination and wastewater reclamation through technologies such as reverse osmosis (RO) are becoming more important. Nevertheless, many open questions remain regarding the internal structure of thin-film composite RO membranes. In this work, fully aromatic polyamide films that serve as the active layer of state-of-the-art water filtration membranes were investigated using high-angle annular dark-field scanning transmission electron microscopy tomography.

View Article and Find Full Text PDF

Artificial water channels are a practical alternative to biological water channels for achieving exceptional water permeability and selectivity in a stable and scalable architecture. However, channel-based membrane fabrication faces critical barriers such as: (1) increasing pore density to achieve measurable gains in permeability while maintaining selectivity, and (2) scale-up to practical membrane sizes for applications. Recently, we proposed a technique to prepare channel-based membranes using peptide-appended pillar[5]arene (PAP[5]) artificial water channels, addressing the above challenges.

View Article and Find Full Text PDF

The long-standing goal in membrane development is creating materials with superior transport properties, including both high flux and high selectivity. These properties are common in biological membranes, and thus mimicking nature is a promising strategy towards improved membrane design. In previous studies, we have shown that artificial water channels can have excellent water transport abilities that are comparable to biological water channel proteins, aquaporins.

View Article and Find Full Text PDF

Synthetic polymer membranes, critical to diverse energy-efficient separations, are subject to permeability-selectivity trade-offs that decrease their overall efficacy. These trade-offs are due to structural variations (e.g.

View Article and Find Full Text PDF

Wastewater treatment plants are thought to be potential reservoirs of antibiotic resistance genes. In this study, GeoChip was used for analyzing multiple antibiotic resistance genes, including four multidrug efflux system gene groups and three β-lactamase genes in ten large-scale membrane bioreactors (MBRs) for municipal wastewater treatment. Results revealed that the diversity of antibiotic genes varied a lot among MBRs, but about 40% common antibiotic resistance genes were existent.

View Article and Find Full Text PDF

Aquaporins (AQPs) are biological water channels known for fast water transport (∼10(8)-10(9) molecules/s/channel) with ion exclusion. Few synthetic channels have been designed to mimic this high water permeability, and none reject ions at a significant level. Selective water translocation has previously been shown to depend on water-wires spanning the AQP pore that reverse their orientation, combined with correlated channel motions.

View Article and Find Full Text PDF

Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.

View Article and Find Full Text PDF

Large-scale membrane bioreactors (MBRs) have been widely used for the municipal wastewater treatment, whose performance relies on microbial communities of activated sludge. Nevertheless, microbial functional structures in MBRs remain little understood. To gain insight into functional genes and their steering environmental factors, we adopted GeoChip, a high-throughput microarray-based tool, to examine microbial genes in four large-scale, in-operation MBRs located in Beijing, China.

View Article and Find Full Text PDF

Aquaporins are highly selective water channel proteins integrated into plasma membranes of single cell organisms; plant roots and stromae; eye lenses, renal and red blood cells in vertebrates. To date, only a few microbial aquaporins have been characterized and their physiological importance is not well understood. Here we report on the cloning, expression and characterization of a novel aquaporin, RsAqpZ, from a purple photosynthetic bacterium, Rhodobacter sphaeroides ATCC 17023.

View Article and Find Full Text PDF

This paper systematically investigated the interference of calcium and magnesium in protein measurement with a modified Lowry method first proposed by Frølund et al. (Appl Microbiol Biotechnol 43:755-761, 1995). This interference has in the past been largely ignored resulting in variable and unreliable results when applied to natural water matrices.

View Article and Find Full Text PDF

The exquisite selectivity and unique transport properties of membrane proteins can be harnessed for a variety of engineering and biomedical applications if suitable membranes can be produced. Amphiphilic block copolymers (BCPs), developed as stable lipid analogs, form membranes that functionally incorporate membrane proteins and are ideal for such applications. While high protein density and planar membrane morphology are most desirable, BCP-membrane protein aggregates have so far been limited to low protein densities in either vesicular or bilayer morphologies.

View Article and Find Full Text PDF

Experiments were conducted to investigate the fouling characteristics of a membrane bioreactor combined with anaerobic-anoxic-oxic process for coke wastewater treatment. Supernatant from the oxic tank was characterized as different hydrophilic/hydrophobic fractions by DAX-8 resin, with joint size partition also undertaken. Polysaccharides and proteins, mainly the fraction with molecular weight above 100kDa, were liable to accumulate in the supernatant.

View Article and Find Full Text PDF