Publications by authors named "Yue-qin Chen"

Rice bacterial blight is a devastating disease worldwide, causing significant yield losses. Understanding how plants defend against microbial infection is critical for sustainable crop production. In this study, we show that ALEX1, a previously identified pathogen-induced long noncoding RNA, localizes to the nucleus and directly binds AUXIN RESPONSE FACTOR 3 (ARF3).

View Article and Find Full Text PDF

Ribosome biogenesis plays a pivotal role in maintaining stem cell homeostasis, yet the precise regulatory mechanisms governing this process in mouse embryonic stem cells (mESCs) remain largely unknown. In this investigation, we ascertain that DEAD-box RNA helicase 10 (DDX10) is indispensable for upholding cellular homeostasis and the viability of mESCs. Positioned predominantly at the nucleolar dense fibrillar component (DFC) and granular component (GC), DDX10 predominantly binds to 45S ribosomal RNA (rRNA) and orchestrates ribosome biogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found that the long non-coding RNA (lncRNA) DNAJC3-AS1 plays a crucial role in regulating FBL's behavior by both promoting its condensation and preventing excessive aggregation.
  • * The findings suggest that lncRNAs like DNAJC3-AS1 could provide a protective mechanism to maintain the functional state of prion-like proteins, helping sustain cellular health and function amidst high protein concentrations.
View Article and Find Full Text PDF

Concerns over the emergence of steroid hormones as pollutants in water have grown. Steroid hormone compounds present challenges in the simultaneous detection of total residual hormones owing to their analogous structures and diverse types. In this study, we established a rapid and high-throughput continuous online method based on solid phase extraction (SPE) coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the simultaneous determination of 61 hormone components, including 48 glucocorticoids, 1 mineralocorticoid, 4 androgens, and 8 progesterones, in water.

View Article and Find Full Text PDF

Increasing grain yield is a major goal of breeders due to the rising global demand for food. We previously reported that the miR397-LACCASE (OsLAC) module regulates brassinosteroid (BR) signaling and grain yield in rice (Oryza sativa). However, the precise roles of laccase enzymes in the BR pathway remain unclear.

View Article and Find Full Text PDF

Background: Mixed-lineage leukemia (MLL) fusion gene caused by chromosomal rearrangement is a dominant oncogenic driver in leukemia. Due to having diverse MLL rearrangements and complex characteristics, MLL leukemia treated by currently available strategies is frequently associated with a poor outcome. Therefore, there is an urgent need to identify novel therapeutic targets for hematological malignancies with MLL rearrangements.

View Article and Find Full Text PDF

The precise timing of flowering plays a pivotal role in ensuring successful plant reproduction and seed production. This process is intricately governed by complex genetic networks that integrate internal and external signals. This study delved into the regulatory function of microRNA397 (miR397) and its target gene LACCASE-15 (OsLAC15) in modulating flowering traits in rice (Oryza sativa).

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are a class of covalently closed, endogenous ncRNAs. Most circRNAs are derived from exonic or intronic sequences by precursor RNA back-splicing. Advanced high-throughput RNA sequencing and experimental technologies have enabled the extensive identification and characterization of circRNAs, such as novel types of biogenesis, tissue-specific and cell-specific expression patterns, epigenetic regulation, translation potential, localization and metabolism.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CDPKs/CPKs) are key regulators of plant stress signaling that translate calcium signals into cellular responses by phosphorylating diverse substrate proteins. However, the molecular mechanism by which plant cells relay calcium signals in response to hypoxia remains elusive. Here, we show that one member of the CDPK family in Arabidopsis thaliana, CPK12, is rapidly activated during hypoxia through calcium-dependent phosphorylation of its Ser-186 residue.

View Article and Find Full Text PDF

Brown planthopper (BPH, Nilaparvata lugens), a highly destructive insect pest, poses a serious threat to rice (Oryza sativa) production worldwide. Jasmonates are key phytohormones that regulate plant defences against BPH; however, the molecular link between jasmonates and BPH responses in rice remains largely unknown. Here, we discovered a Poaceae-specific metabolite, mixed-linkage β-1,3;1,4-d-glucan (MLG), which contributes to jasmonate-mediated BPH resistance.

View Article and Find Full Text PDF

Molecular breeding is one of the most effective methods for improving the performance of crops. Understanding the genome features of crops, especially the physiological functions of individual genes, is of great importance to molecular breeding. Evidence has shown that genomes of both animals and plants transcribe numerous non-coding RNAs, which are involved in almost every aspect of development.

View Article and Find Full Text PDF

N -Methyladenosine (m A) is an important RNA modification catalyzed by methyltransferase-like 3 (METTL3) and METTL14. m A homeostasis mediated by the methyltransferase (MTase) complex plays key roles in various biological processes. However, the mechanism underlying METTL14 protein stability and its role in m A homeostasis remain elusive.

View Article and Find Full Text PDF

Submergence is an abiotic stress that limits agricultural production world-wide. Plants sense oxygen levels during submergence and postsubmergence reoxygenation and modulate their responses. Increasing evidence suggests that completely submerged plants are often exposed to low-light stress, owing to the depth and turbidity of the surrounding water; however, how light availability affects submergence tolerance remains largely unknown.

View Article and Find Full Text PDF

In addition to coding proteins, RNA molecules, especially long noncoding RNAs (lncRNAs), have well-established functions in regulating gene expression. The number of studies focused on the roles played by different types of lncRNAs in a variety of plant biological processes has markedly increased. These lncRNA roles involve plant vegetative and reproductive growth and responses to biotic and abiotic stresses.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are usually 5' capped and 3' polyadenylated, similar to most typical mRNAs. However, recent studies revealed a type of snoRNA-related lncRNA with unique structures, leading to questions on how they are processed and how they work. Here, we identify a novel snoRNA-related lncRNA named LNC-SNO49AB containing two C/D box snoRNA sequences, SNORD49A and SNORD49B; and show that LNC-SNO49AB represents an unreported type of lncRNA with a 5'-end m7G and a 3'-end snoRNA structure.

View Article and Find Full Text PDF

Small nucleolar RNAs (snoRNAs) are commonly acknowledged as a class of homogeneous non-coding RNAs that guide ribosomal RNA modifications. However, snoRNAs referred to as orphans have largely unknown functions. Here, we systematically profile chromatin-associated snoRNAs (casnoRNAs) in mammalian cells and identify a subgroup of orphan casnoRNAs responding to DNA damage stress, among which SNORA73 shows the most marked reduction in chromatin enrichment.

View Article and Find Full Text PDF
Article Synopsis
  • Plants can generate callus, a cell mass crucial for tissue regeneration, but the role of chromatin-enriched noncoding RNAs (cheRNAs) in this process is still unclear.
  • Recent research identified 2,284 cheRNAs during various stages of callus formation in rice, revealing their regulatory functions in gene expression and their importance for plant size and seed morphology.
  • These findings highlight cheRNAs' vital role in somatic cell regeneration and suggest they could be key targets for enhancing crop traits in the future.
View Article and Find Full Text PDF

The cereal endosperm is a major factor determining seed size and shape. However, the molecular mechanisms of endosperm development are not fully understood. Long noncoding RNAs (lncRNAs) function in various biological processes.

View Article and Find Full Text PDF

N6-methyladenosine (m6A) has emerged as an abundant modification throughout the transcriptome with widespread functions in protein-coding and noncoding RNAs. It affects the fates of modified RNAs, including their stability, splicing, and/or translation, and thus plays important roles in posttranscriptional regulation. To date, m6A methyltransferases have been reported to execute m6A deposition on distinct RNAs by their own or forming different complexes with additional partner proteins.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies highlight circular RNAs (circRNAs) as a significant type of stable, noncoding RNA that are widely found in eukaryotic organisms and play key roles in biological processes.
  • *The specific functions of circRNAs in plants are not well understood and require more research to uncover their potential roles.
  • *The article offers protocols for identifying circRNAs, focusing on their circular forms, composition, and location in challenging plant tissues that are rich in polysaccharides and polyphenols.*
View Article and Find Full Text PDF

MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1), a rice (Oryza sativa) Argonaute (AGO) protein, has been reported to function specifically at premeiotic and meiotic stages of germ cell development and is associated with a novel class of germ cell-specific small noncoding RNAs called phased small RNAs (phasiRNAs). MEL1 accumulation is temporally and spatially regulated and is eliminated after meiosis. However, the metabolism and turnover (i.

View Article and Find Full Text PDF
Article Synopsis
  • - Crop domestication is a key process in plant evolution, and while previous research has focused on noncoding RNAs like microRNAs and protein-coding genes, there's limited understanding of long noncoding RNAs (lncRNAs) in this context.
  • - In this study, researchers used RNA sequencing to identify 8,528 lncRNAs in cultivated and wild rice, finding that wild rice lncRNAs are generally shorter and have fewer exons than those in cultivated rice.
  • - The study also uncovered conserved lncRNAs that are linked to domestication traits in rice, shedding light on their role and conservation during the domestication process.
View Article and Find Full Text PDF