Application of porous polymeric materials is severely limited by their ultralow thermal conductivities. Herein, by promoting the formation of thermal conduction pathways, we fabricated open-cellular structured polyethylene/hexagonal boron nitride hybrid thermal conductors via melt compounding plus salt leaching. The structural analyses indicate that the inclusion of hBN can enhance the open-cell level of resultant materials.
View Article and Find Full Text PDFThermogravimetric-Fourier Transform Infrared Spectroscopy was conducted to evaluate the combustion characteristics of refuse derived fuel (RDF) adding of microwave chlorine depleted pyrolyzate in the mass proportion of 5-15%. It studied the catalyze effect of chlorine depleted pyrolyzate on RDF combustion performance. The combustion process of RDF could be divided into four stages.
View Article and Find Full Text PDFAlcohol wastewater (AW) as carbon source for enhancing Chlorella pyrenoidosa growth and lipid accumulation in anaerobically digested starch wastewater (ADSW) was performed in outdoor cultivation. The biomass and lipid production significantly increased while adding optimal amount of AW (AW/ADSW=1:15) during exponential phase. In comparison with blank ADSW culture, the optimal AW addition increased the biomass production, lipid content and productivity by 35.
View Article and Find Full Text PDFThe present study focuses on pretreatment of enhancing the properties of refuse-derived fuel (RDF) via low-temperature microwave irradiation. These improved properties include lower chlorine content, a more porous surface structure and better combustion characteristics. In this study, low-temperature microwave irradiation was carried out in a modified microwave apparatus and the range of temperature was set to be 220-300℃.
View Article and Find Full Text PDFIn order to form a modified solid recovered fuel (SRF) with low chlorine content, high calorific value and well combustion performance, low temperature microwave irradiation was applied to remove the chlorine of the organochloride waste mixture before they were mixed to form SRF. The optimizing conditions of final temperature, microwave absorbents and heating rate were also detected to obtain high dechlorination ratio and high ratio of hydrogen chloride (HCl) to volatiles. In the temperature range of 220-300°C, 280°C would be chose as the optimal low microwave modified temperature concerning at which the dechlorination ratio was high and ratio of HCl to volatiles was relatively high as well; The use of microwave absorbents of graphite and silicon carbide (SiC) had a pronounced effect on the dechlorination of organochloride waste mixture, and the dechlorination ratio was increased significantly which could be reached to 87%, almost 20% higher than absorbent absent sample; The heating rate should set be not too fast nor too slow, and there was no big difference between the heating rate of 13°C/min and 15°C/min; The content of Cl of modified SRF is dramatically decreased and reaches to a low level 0.
View Article and Find Full Text PDF