Development of the cerebellum requires precise regulation of granule neuron progenitor (GNP) proliferation. Although it is known that primary cilia are necessary to support GNP proliferation, the exact molecular mechanism governing primary cilia dynamics within GNPs remains elusive. Here, we establish the pivotal roles for the centrosomal kinase TTBK2 (Tau tubulin kinase-2) and the E3 ubiquitin ligase HUWE1 in GNP proliferation.
View Article and Find Full Text PDFThymus is a primary lymphoid organ essential for the development of T lymphocytes. Age-related thymic involution is a prominent feature of immune senescence. The thymus undergoes rapid growth during fetal and neonatal development, peaks in size before puberty and then begins to undergo a decrease in cellularity with age.
View Article and Find Full Text PDFWolbachia is capable of regulating host reproduction, and thus of great significance in preventing the spread of insect-borne diseases and controlling pest insects. The fruit fly Drosophila melanogaster is an excellent model insect for understanding Wolbachia-host interactions. Here we artificially transferred the wCcep strain from the rice moth Corcyra cephalonica into D.
View Article and Find Full Text PDFRecently, although ginseng ( Panax ginseng C. A. Meyer) and its main component saponins (ginsenosides) have been reported to exert protective effects on cisplatin (CDDP)-induced acute kidney injury (AKI), the beneficial activities of non-saponin on CDDP-induced AKI is little known.
View Article and Find Full Text PDFThe structure of pristine AgFeO and phase makeup of AgFeO (a one-pot composite comprised of nanocrystalline stoichiometric AgFeO and amorphous γ-FeO phases) was investigated using synchrotron X-ray diffraction. A new stacking-fault model was proposed for AgFeO powder synthesized using the co-precipitation method. The lithiation/de-lithiation mechanisms of silver ferrite, AgFeO and AgFeO were investigated using ex situ, in situ, and operando characterization techniques.
View Article and Find Full Text PDFThe combination of ex situ X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements on 2D layered copper birnessite cathode materials for lithium ion battery applications provides detailed insight into both bulk-crystalline and localized atomic structural changes resulting from electrochemically driven lithium insertion and de-insertion. Copper birnessite electrodes that had been galvanostatically discharged and charged were measured with XRD to determine the accompanying long-range crystalline structure changes, while Mn and Cu K-edge XAS measurements provided a detailed view of the Mn and Cu oxidation state changes along with variations of the local neighboring atom environments around the Mn and Cu centers. While not detectable with XRD spectra, through XAS measurements it was determined that the copper ions (Cu(2+)) are reduced to form amorphous nano-sized Cu metal, and can be oxidized back to Cu(2+).
View Article and Find Full Text PDF