Publications by authors named "Yue-Juan Wei"

By simulating the sound field of a round piston transducer with the Kirchhoff integral theorem and analyzing the shape of ultrasound beams and propagation characteristics in a metal container wall, this study presents a model for calculating the echo sound pressure by using the Kirchhoff paraxial approximation theory, based on which and according to different ultrasonic impedance between gas and liquid media, a method for detecting the liquid level from outside of sealed containers is proposed. Then, the proposed method is evaluated through two groups of experiments. In the first group, three kinds of liquid media with different ultrasonic impedance are used as detected objects; the echo sound pressure is calculated by using the proposed model under conditions of four sets of different wall thicknesses.

View Article and Find Full Text PDF

This study presents a novel method for determining the liquid level from the outside of a sealed container, which is based on the balance of echo energy received by two receiving sensors. The proposed method uses one transmitting transducer and two receiving sensors that are encapsulated in a coupling plane and arranged by certain rules. The calculation and comparison of echo energy are grounded on the difference ultrasonic impedance between gas and liquid media.

View Article and Find Full Text PDF

The proposed method for measuring the liquid level focuses on the ultrasonic impedance and echo energy inside a metal wall, to which the sensor is attached directly, not on ultrasonic waves that penetrate the gas-liquid medium of a container. Firstly, by analyzing the sound field distribution characteristics of the sensor in a metal wall, this paper proposes the concept of an "energy circle" and discusses how to calculate echo energy under three different states in detail. Meanwhile, an ultrasonic transmitting and receiving circuit is designed to convert the echo energy inside the energy circle into its equivalent electric power.

View Article and Find Full Text PDF