In recent years, there has been a notable surge of interest in the fields of organic and pharmaceutical research about photocatalysts (PCs) and photosensitizers (PSs). In this study, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) molecule adorned with quaternary ammonium (TMB) functionality was meticulously designed and synthesized. This compound has remarkable characteristics such as exceptional water solubility, great optical qualities, and commendable photostability.
View Article and Find Full Text PDFAn artificial light-harvesting system (ALHS) was developed in aqueous solution by employing the electrostatic co-assembly of a tetraphenylethylene derivative modified with two sulfonate groups (TPE-BSBO) and hyperbranched polyethyleneimine (PEI) as the energy donors, and 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (DBT) as the energy acceptors. The ALHS exhibits not only high efficiency in energy transfer and conversion but also a significant enhancement in the generation of reactive oxygen species (ROS), especially superoxide anion radicals (O˙), facilitating its utilization in photocatalytic oxidation reactions.
View Article and Find Full Text PDFIn the present work, we have designed and synthesized a triphenylamine modified cyanophenylenevinylene derivative (TPCI), which can self-assembly with cucurbit[6]uril (CB[6]) and cucurbit[8]uril (CB[8]) through host-guest interactions to form supramolecular complexes (TPCI-CB[6]) and supramolecular polymers (TPCI-CB[8]) in the aqueous solution. The supramolecular assemblies of TPCI-CB[6] and TPCI-CB[8] not only exhibited high singlet oxygen (O) production efficiency as photosensitizers, but also realized the application in the construction of artificial light-harvesting systems due to the excellent fluorescence properties in the aqueous solution. The production efficiency of O has been effectively improved after the addition of CB[6] and CB[8] for TPCI, which were applied as efficient photosensitizers in the photooxidation reactions of thioanisole and its derivatives with the highest yield of 98% in the aqueous solution.
View Article and Find Full Text PDFIn the present work, we designed and synthesized a cationic cyano-substituted p-phenylenevinylene derivative (PPTA), which can form supramolecular assemblies through electrostatic interaction with a type of polyelectrolyte material anionic guar gum (GP5A). A polyelectrolyte-based artificial light-harvesting system (LHS) was constructed by selecting a fluorescent dye sulforhodamine 101 (SR101) that matched its energy level as an energy acceptor. The energy harvested by the acceptors was used in the aqueous phase cross dehydrogenation coupling (CDC) reaction with a yield of up to 87%.
View Article and Find Full Text PDFBackground: Pulmonary artery aneurysm (PAA), usually associated with congenital heart disease (CHD), is a very rare clinical condition. Pulmonary artery dissection (PAD) is considered the most life-threatening complication of PAA, and patients can progress from being asymptomatic to sudden death. We report the following case of PAA associated with complicated congenital heart disease and simultaneous chronic PAD.
View Article and Find Full Text PDFA novel nanoarchitecture (MSN-Tb-UbR) was prepared by modifying rhodamine B-labelled Ubs (Ub-Rs) on the surface of mesoporous silica nanoparticles (MSNs) loaded with Tb-complexes. The MSN-Tb-UbR exhibits ratiometric sensing ability for DUB (UCH-L1) with good sensitivity and selectivity.
View Article and Find Full Text PDFWe demonstrated a sensitive method for detection of glutathione (GSH) based on LSPR scattering spectrum using gold core-satellite nanostructure linked by T-Hg-T base pair. The core-satellite assembly caused coupling between plasmonic nanoparticles, which inducing distinct change of LSPR peak wavelength. As the interaction between Hg and GSH, the core-satellite nanostructure would be disassembled, which accompanied with spectral blue-shift of the scattering spectrum.
View Article and Find Full Text PDFThe formation of covalently linked composites of multi-walled carbon nanotubes (MWCNT) and glucose oxidase (GOD) with high-function density for use as a biosensing interface is described. The reaction intermediates and the final product were characterized by using FT-IR spectroscopy, and the MWCNT-coated GOD nanocomposites were examined by atomic force microscopy (AFM) and transmission electron microscopy (TEM). Interestingly, it was found that the GOD-MWCNT composites are highly water soluble.
View Article and Find Full Text PDF