FXIa-6f is a high affinity, orally bioavailable macrocyclic FXIa inhibitor with antithrombotic activity in preclinical species.The objectives of this study were to characterize the in vitro metabolism, determine circulating metabolites in pre-clinical species, and examine the disposition of the compound in a bile duct-cannulated rat study (BDC) study to inform clinical development of the compound and the medicinal chemistry approach to identify molecules with improved properties.Across species, metabolic pathways included several oxidative metabolites, including hydroxylated metabolites on the macrocycle or P1 region, descarbamoylation of the methyl carbamate side chain, and a glutathione conjugate on the 2,6-difluoro-3-chlorophenyl ring.
View Article and Find Full Text PDFTransforming growth factor beta (TGF-β) is a pleiotropic cytokine that has a wide array of biological effects. For decades, tumor biology implicated TGF-β as an attractive therapeutic target due to its immunosuppressive effects. Toward this end, multiple pharmaceutical companies developed a number of drug modalities that specifically target the TGF-β pathway.
View Article and Find Full Text PDFIn order to rapidly develop C6 and C8 SAR of our reported tricyclic sulfone series of RORγt inverse agonists, a late-stage bromination was employed. Although not regioselective, the bromination protocol allowed us to explore new substitution patterns/vectors that otherwise would have to be incorporated at the very beginning of the synthesis. Based on the SAR obtained from this exercise, compound 15 bearing a C8 fluorine was developed as a very potent and selective RORγt inverse agonist.
View Article and Find Full Text PDFThe applications of fluorine in drug design continue to expand, facilitated by an improved understanding of its effects on physicochemical properties and the development of synthetic methodologies that are providing access to new fluorinated motifs. In turn, studies of fluorinated molecules are providing deeper insights into the effects of fluorine on metabolic pathways, distribution, and disposition. Despite the high strength of the C-F bond, the departure of fluoride from metabolic intermediates can be facile.
View Article and Find Full Text PDFG protein-coupled receptor 40 (GPR40) has become an attractive target for the treatment of diabetes since it was shown clinically to promote glucose-stimulated insulin secretion. Herein, we report our efforts to develop highly selective and potent GPR40 agonists with a dual mechanism of action, promoting both glucose-dependent insulin and incretin secretion. Employing strategies to increase polarity and the ratio of sp/sp character of the chemotype, we identified BMS-986118 (compound 4), which showed potent and selective GPR40 agonist activity in vitro.
View Article and Find Full Text PDF1. Due to its unique C-C and C-H bonding properties, conformational preferences and relative hydrophilicity, the cyclopropyl ring has been used as a synthetic building block in drug discovery to modulate potency and drug-like properties. During an effort to discover inhibitors of the hepatitis C virus non-structural protein 5B with improved potency and genotype-coverage profiles, the use of a pyrimidinylcyclopropylbenzamide moiety linked to a C6-substituted benzofuran or azabenzofuran core scaffold was explored in an effort to balance antiviral potency and metabolic stability.
View Article and Find Full Text PDFThe hepatitis C virus (HCV) NS5B replicase is a prime target for the development of direct-acting antiviral drugs for the treatment of chronic HCV infection. Inspired by the overlay of bound structures of three structurally distinct NS5B palm site allosteric inhibitors, the high-throughput screening hit anthranilic acid 4, the known benzofuran analogue 5, and the benzothiadiazine derivative 6, an optimization process utilizing the simple benzofuran template 7 as a starting point for a fragment growing approach was pursued. A delicate balance of molecular properties achieved via disciplined lipophilicity changes was essential to achieve both high affinity binding and a stringent targeted absorption, distribution, metabolism, and excretion profile.
View Article and Find Full Text PDFAim: High clearance is a commonly encountered issue in drug discovery. Here we present a centralized metabolic soft spot identification assay with adequate capacity and turnaround time to support the metabolic optimization needs of an entire discovery organization.
Methodology: An integrated quan/qual approach utilizing both an orthogonal sample-pooling methodology and software-assisted structure elucidation was developed to enable the assay.
Daclatasvir is a first-in-class, potent, and selective inhibitor of the hepatitis C virus nonstructural protein 5A replication complex. In support of nonclinical studies during discovery and exploratory development, liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance were used in connection with synthetic and radiosynthetic approaches to investigate the biotransformation of daclatasvir in vitro and in cynomolgus monkeys, dogs, mice, and rats. The results of these studies indicated that disposition of daclatasvir was accomplished mainly by the release of unchanged daclatasvir into bile and feces and, secondarily, by oxidative metabolism.
View Article and Find Full Text PDFAlthough designed covalent inhibitors as drug candidates offer several unique advantages over conventional reversible inhibitors, including high potency and the potential for less frequent dosing, there is a general tendency to avoid the covalent mode of action in drug discovery programs due to concerns regarding immune-mediated toxicity that can arise from indiscriminate reactivity with off-target proteins. Therefore, the ability to assess off-target reactivity relative to target specificity is desirable for optimizing covalent drug candidates in the early discovery stage. One concern with current surrogate nucleophile trapping approaches is that they employ a simplistic model nucleophile such as glutathione, which may not reliably reflect the covalent interactions with cellular or extracellular proteins.
View Article and Find Full Text PDFUnbound plasma concentrations may not reflect those in target tissues, and there is a need for methods to predict tissue partitioning. Here, we investigate the unbound liver partitioning (Kpu,u) of rosuvastatin, a substrate of hepatic organic anion transporting peptides, in cynomolgus monkeys and compare it with that determined using hepatocytes in vitro. Rosuvastatin (3 mg/kg) was administered orally to monkeys and plasma and liver (by ultrasound-guided biopsy) collected over time.
View Article and Find Full Text PDFThe detection and characterization of low-level protein modifications in a complex system without a methodology for modification enrichment is a very challenging task. This study describes a high-resolution LC/MS-based background subtraction methodology for the unbiased detection and identification of acetaminophen-bound proteins formed in incubations with mouse liver microsomes. The microsomal incubations were conducted using both acetaminophen and [(13)C2,(15)N]acetaminophen at a drug concentration of 200 μM.
View Article and Find Full Text PDFA recent medicinal chemistry campaign to identify positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGluR5) led to the discovery of potent compounds featuring an oxazolidinone structural core flanked by biaryl acetylene and haloaryl moieties. However, biotransformation studies of some of these mGluR5 PAMs demonstrated the formation of glutathione (GSH) conjugates. The conjugates in question were formed independently of NADPH as the main products in liver microsomes and liver cytosol (rat and human) and exhibited masses that were 307 u greater than their respective substrates, indicating the involvement of a reductive step in the formation of these metabolites.
View Article and Find Full Text PDFAsunaprevir (ASV; BMS-650032), a low nanomolar inhibitor of the hepatitis C virus (HCV) NS3 protease, is currently under development, in combination with other direct-acting antiviral (DAA) agents for the treatment of chronic HCV infection. Extensive nonclinical and pharmacokinetic studies have been conducted to characterize the ADME properties of ASV. ASV has a moderate to high clearance in preclinical species.
View Article and Find Full Text PDFCovalent modification of cellular proteins by chemically reactive compounds/metabolites has the potential to disrupt biological function and elicit serious adverse drug reactions. Information on the nature and binding patterns of protein targets are critical toward understanding the mechanism of drug induced toxicity. Protein covalent binding studies established in liver microsomes can quantitively estimate the extent of protein modification, but they provide little information on the nature of the modified proteins.
View Article and Find Full Text PDFCertain functional groups/structural motifs are known to generate chemically reactive metabolites that can covalently modify essential cellular macromolecules and, therefore, have the potential to disrupt biological function and elicit idiosyncratic adverse drug reactions. In this report, we describe the bioactivation of 5-substituted 2-(alkylthio)-1,3,4-thiadiazoles and 2-(alkylthio)-1,3-benzothiazoles, which can be added to the growing list of structural alerts. When 5-substituted 2-(methylthio)-1,3,4-thiadiazoles and 2-(methylthio)-1,3-benzothiazole were incubated with pooled human liver microsomes in the presence of NADPH and GSH, unusual GSH adducts were formed.
View Article and Find Full Text PDFThe ring oxidation of 2H-oxazole, or C2-unsubstituted oxazole, to 2-oxazolone, a cyclic carbamate, was observed on various 4- or 5-substituted oxazoles. Using 5-(3-bromophenyl)oxazole as a model compound, its 2-oxazolone metabolite M1 was fully characterized by liquid chromatography/tandem mass spectrometry and nuclear magnetic resonance. The reaction mainly occurred in the liver cytosolic fraction without the requirement of cytochrome P450 enzymes and cofactor NADPH.
View Article and Find Full Text PDFDetailed metabolic characterization of 8, an earlier lead pyrazinone-based corticotropin-releasing factor-1 (CRF(1)) receptor antagonist, revealed that this compound formed significant levels of reactive metabolites, as measured by in vivo and in vitro biotransformation studies. This was of particular concern due to the body of evidence suggesting that reactive metabolites may be involved in idiosyncratic drug reactions. Further optimization of the structure-activity relationships and in vivo properties of pyrazinone-based CRF(1) receptor antagonists and studies to assess the formation of reactive metabolites led to the discovery of 19e, a high affinity CRF(1) receptor antagonist (IC(50) = 0.
View Article and Find Full Text PDFCYP2A5, a mouse cytochrome P450 monooxygenase that shows high similarities to human CYP2A6 and CYP2A13 in protein sequence and substrate specificity, is expressed in multiple tissues, including the liver, kidney, lung, and nasal mucosa. Heterologously expressed CYP2A5 is active in the metabolism of both endogenous substrates, such as testosterone, and xenobiotic compounds, such as nicotine and cotinine. To determine the biological and pharmacological functions of CYP2A5 in vivo, we have generated a Cyp2a5-null mouse.
View Article and Find Full Text PDF(S)-5-Chloro-1-(1-cyclopropylethyl)-3-(2,6-dichloro-4-(trifluoromethyl)phenylamino)pyrazin-2(1H)-one (BMS-665053), a pyrazinone-containing compound, is a potent and selective antagonist of corticotropin-releasing factor receptor-1 (CRF-R1) that showed efficacy in the defensive withdrawal model for anxiety in rats, suggesting its use as a potential treatment for anxiety and depression. In vitro metabolism studies of BMS-665053 in rat and human liver microsomes revealed cytochrome P450-mediated oxidation of the pyrazinone moiety, followed by ring opening, as the primary metabolic pathway. Detection of a series of GSH adducts in trapping experiments suggested the formation of a reactive intermediate, probably as a result of epoxidation of the pyrazinone moiety.
View Article and Find Full Text PDF3-Methylindole (3MI), a respiratory tract toxicant, can be metabolized by a number of cytochromes P450 (P450), primarily through either dehydrogenation or epoxidation of the indole. In the present study, we assessed the bioactivation of 3MI by recombinant CYP2A13, a human P450 predominantly expressed in the respiratory tract. Four metabolites were detected, and the two principal ones were identified as indole-3-carbinol (I-3-C) and 3-methyloxindole (MOI).
View Article and Find Full Text PDFThe presence of high levels, as well as tissue-specific forms, of cytochrome P450 enzymes in mammalian olfactory mucosa (OM) has important implications in the bioactivation and toxicity of xenobiotics entering the tissue. Previous studies have shown that coumarin, a known olfactory toxicant in rats, is bioactivated by OM microsomal P450s to a number of products, presumably via coumarin-3,4-epoxide and other epoxide intermediates. The aim of the current study was to obtain direct evidence for the formation of such reactive intermediates in rat OM through the detection of protein covalent binding and glutathione (GSH) adduct formation.
View Article and Find Full Text PDFEvidence suggests that corticotropin-releasing factor-1 (CRF(1)) receptor antagonists may offer therapeutic potential for the treatment of diseases associated with elevated levels of CRF such as anxiety and depression. A pyrazinone-based chemotype of CRF(1) receptor antagonists was discovered. Structure-activity relationship studies led to the identification of numerous potent analogues including 12p, a highly potent and selective CRF(1) receptor antagonist with an IC(50) value of 0.
View Article and Find Full Text PDF5-Isopropyl-6-(5-methyl-1,3,4-oxadiazol-2-yl)-N-(2-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4-amine (BMS-645737) is a potent and selective vascular endothelial growth factor receptor-2 antagonist. In this study, liquid chromatography/tandem mass spectrometry and NMR were used to investigate the biotransformation of BMS-645737 in vitro and in the cynomolgus monkey, dog, mouse, and rat. Metabolic pathways for BMS-645737 included multistep processes involving both oxidation and conjugation reactions.
View Article and Find Full Text PDFMetabolism-related liabilities continue to be a major cause of attrition for drug candidates in clinical development. Such problems may arise from the bioactivation of the parent compound to a reactive metabolite capable of modifying biological materials covalently or engaging in redox-cycling reactions leading to the formation of other toxicants. Alternatively, they may result from the formation of a major metabolite with systemic exposure and adverse pharmacological activity.
View Article and Find Full Text PDF