Biological nitrogen (N) fixation is an important source of N in terrestrial ecosystems, but the response of soil microbial N fixation rate to N deposition in different forest ecosystems still remains uncertain. We conducted a field N addition experiment to simulate atmosphere N deposition in subtropical and forests. We set up three levels of nitrogen addition using urea as the N source: 0 (control), 40 (low N), and 80 g N·hm·a(high N) to examine the chemical properties, microbial biomass C, enzyme activities, and gene copies of top soils (0-10 cm).
View Article and Find Full Text PDFUnderstanding changes in soil enzyme activities and ecoenzymatic stoichiometry is important for assessing soil nutrient availability and microbial nutrient limitation in mountain ecosystems. However, the variations of soil microbial nutrient limitation across elevational gradients and its driving factors in subtropical mountain forests are still unclear. In this study, we measured soil properties, microbial biomass, and enzyme activities related to carbon (C), nitrogen (N), and phosphorus (P) cycling in forests at different altitudes of Wuyi Mountains.
View Article and Find Full Text PDFWe examined the effects of warming (+5 ℃) and reduced natural precipitation (-50%) on nutrient status and physiological indices of Cunninghamia lanceolata seedlings during winter and summer in subtropical China. The results showed that seasonal changes in temperature and precipitation caused the seasonal differences in plant nutrient contents and metabolites levels. Contents of carbon, nitrogen, phosphorus, and potassium in leaves in winter were significantly higher than those in summer.
View Article and Find Full Text PDFTo study the effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter (DOM) in the forest soil solution from the subtropical Cunninghamia lanceolata plantation, using negative pressure sampling method, the dynamics of DOM in soil solutions from 0-15 and 15-30 cm soil layer was monitored for two years and the spectroscopic features of DOM were analyzed. The results showed that nitrogen deposition significantly reduced the concentration of dissolved organic carbon (DOC), and increased the aromatic index (AI) and the humic index (HIX), but had no significant effect on dissolved organic nitrogen (DON) concentration in both soil layers. There was obvious seasonal variation in DOM concentration of the soil solution, which was prominently higher in summer and autumn than in spring and winter.
View Article and Find Full Text PDFUsing the negative pressure sampling method, the concentrations and spectral characte-ristics of dissolved organic matter (DOM) of soil solution were studied at 0-15, 15-30, 30-60 cm layers in Castanopsis carlesii forest (BF), human-assisted naturally regenerated C. carlesii forest (RF), C. carlesii plantation (CP) in evergreen broad-leaved forests in Sanming City, Fujian Pro-vince.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2010
The role of short-range order (SRO) metal oxides, which are common in acid soils and associated environments, in influencing the abiotic transformations of catechin, which is common in the soil of tea plantations, still remains poorly understood. The aim of this study was to investigate the catalytic power of SRO Mn(IV)-, Fe(III)- and Al-oxides in influencing the abiotic transformations of catechin. At the end of a 90-h reaction period, the release of CO(2) in all the oxide-catechin systems is higher than that for the system with only catechin.
View Article and Find Full Text PDF