Publications by authors named "Yue Lun"

Many-body effects play an important role in enhancing and modifying optical absorption and other excited-state properties of solids in the perturbative regime, but their role in high harmonic generation (HHG) and other nonlinear response beyond the perturbative regime is not well-understood. We develop here an ab initio many-body method to study nonperturbative HHG based on the real-time propagation of the non-equilibrium Green's function with the GW self energy. We calculate the HHG of monolayer MoS and obtain good agreement with experiment, including the reproduction of characteristic patterns of monotonic and nonmonotonic harmonic yield in the parallel and perpendicular responses, respectively.

View Article and Find Full Text PDF

Anomalous high-harmonic generation (HHG) arises in certain solids when irradiated by an intense laser field, originating from a Berry-curvature-induced perpendicular anomalous current. The observation of pure anomalous harmonics is, however, often prohibited by contamination from harmonics stemming from interband coherences. Here, we fully characterize the anomalous HHG mechanism, via development of an ab initio methodology for strong-field laser-solid interaction that allows a rigorous decomposition of the total current.

View Article and Find Full Text PDF

High-harmonic generation (HHG) in solids has been touted as a way to probe ultrafast dynamics and crystal symmetries in condensed matter systems. Here, we investigate the polarization properties of high-order harmonics generated in monolayer MoS_{2}, as a function of crystal orientation relative to the mid-infrared laser field polarization. At several different laser wavelengths we experimentally observe a prominent angular shift of the parallel-polarized odd harmonics for energies above approximately 3.

View Article and Find Full Text PDF

Excitation of ionic solids with extreme ultraviolet pulses creates localized core-level excitons, which in some cases couple strongly to the lattice. Here, core-level-exciton states of magnesium oxide are studied in the time domain at the Mg L_{2,3} edge with attosecond transient reflectivity spectroscopy. Attosecond pulses trigger the excitation of these short-lived quasiparticles, whose decay is perturbed by time-delayed near-infrared pulses.

View Article and Find Full Text PDF

We theoretically investigate high-harmonic generation in hexagonal boron nitride with linearly polarized laser pulses. We show that imperfect recollisions between electron-hole pairs in the crystal give rise to an electron-hole-pair polarization energy that leads to a double-peak structure in the subcycle emission profiles. An extended recollision model (ERM) is developed that allows for such imperfect recollisions, as well as effects related to Berry connections, Berry curvatures, and transition-dipole phases.

View Article and Find Full Text PDF

Background: Gastric carcinoma (GC) is a familiar carcinoma and serious threat to human health. We investigated the efficacy and mechanism of circular RNA hsa_circ_0001649 on the growth, migration, and invasion of GC cells.

Methods: microRNA (miR)-20a and hsa_circ_0001649 expression was investigated by RT-qPCR and was changed by cell transfection.

View Article and Find Full Text PDF

Gastric cancer (GC) is a high mortality disease. We studied the function and mechanism of long non-coding RNA prostate cancer-associated transcript 6 (lncRNA PCAT6) on cell proliferation and epithelial-mesenchymal transition (EMT) in GC cells. CCK-8, flow cytometry and colony formation assay were respectively used to detect the cell viability, apoptosis and colony formation.

View Article and Find Full Text PDF

Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. Circular RNA circHIAT1 has been proved to play an antitumor role. We aimed to explore the function and mechanism of circHIAT1 in GC.

View Article and Find Full Text PDF

Background: CircMAN2B2 is a newly discovered circRNA that has been found to be an oncogene in lung cancer and glioma. The present study was designed to reveal the role of circMAN2B2 in gastric carcinoma (GC).

Methods: qRT-PCR method was utilized to examine circMAN2B2 expression in GC tissues and paracancerous tissues.

View Article and Find Full Text PDF

Structural information on electronically excited neutral molecules can be indirectly retrieved, largely through pump-probe and rotational spectroscopy measurements with the aid of calculations. Here, we demonstrate the direct structural retrieval of neutral carbonyl disulfide (CS) in the [Formula: see text] excited electronic state using laser-induced electron diffraction (LIED). We unambiguously identify the ultrafast symmetric stretching and bending of the field-dressed neutral CS molecule with combined picometer and attosecond resolution using intrapulse pump-probe excitation and measurement.

View Article and Find Full Text PDF

The laser-induced fragmentation dynamics of this most fundamental polar molecule HeH^{+} are measured using an ion beam of helium hydride and an isotopologue at various wavelengths and intensities. In contrast to the prevailing interpretation of strong-field fragmentation, in which stretching of the molecule results primarily from laser-induced electronic excitation, experiment and theory for nonionizing dissociation, single ionization, and double ionization both show that the direct vibrational excitation plays the decisive role here. We are able to reconstruct fragmentation pathways and determine the times at which each ionization step occurs as well as the bond length evolution before the electron removal.

View Article and Find Full Text PDF

We examine the circular dichroism in the angular distribution of photoelectrons of triatomic model systems ionized by strong-field ionization. Following our recent work on this effect [Paul, Yue, and Gräfe, J. Mod.

View Article and Find Full Text PDF

We study the breakup of H2+ exposed to superintense, femtosecond laser pulses with frequencies greater than that corresponding to the ionization potential. By solving the time-dependent Schrödinger equation in an extensive field parameter range, it is revealed that highly nonresonant dissociation channels can dominate over ionization. By considering field-dressed Born-Oppenheimer potential energy curves in the reference frame following a free electron in the field, we propose a simple physical model that characterizes this dissociation mechanism.

View Article and Find Full Text PDF