The study aimed to assess the oxidative modification behavior of bovine myofibrillar proteins (MPs) cysteines (Cys) by hydroxyl radical (·OH) through the construction of an in vitr Fenton reaction system. The ·OH generated by the Fenton reaction induced large-scale oxidative modification of Cys, and redox proteomics identified a total of 1192 differential oxidation sites (Dos), 59 Dos were located in the MPs structure. The Cys of actin (17 Dos), myosin/myomesin (16 Dos), tenascin (12 Dos) and sarcomere (10 Dos) in the MPs structure showed active oxidative modification behavior towards ·OH, especially with the "-C-X-X-X-X-W-" structure amino acid sequence showed high sensitivity.
View Article and Find Full Text PDFNanomaterials have become essential in the daily lives, finding applications in food, skincare, drugs, and vaccines. Traditionally, the surface chemistry of nanoparticles (NPs) is considered the key factor in determining their interactions with biological systems. However, recent studies have shown that the mechanical properties of nanomaterials are equally important in regulating nano-bio interactions, though they have often been overlooked.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Programmed cell death-ligand 1 (PD-L1) blockers have advanced immunotherapy, but their lack of tumour homing capability represents a substantial challenge. Here we show that genetically engineered filamentous phages can be used as tumour-targeting immunotherapeutic agents that reduce the side effects caused by untargeted delivery of PD-L1 blockers. Specifically, we improved biopanning to discover a peptide binding the extracellular domain of PD-L1 and another targeting both melanoma tissues and cancer cells.
View Article and Find Full Text PDFPeptide surfactants have been extensively investigated with various applications in detergents, foods, and pharmaceutics due to their biodegradability, biocompatibility, and customizable structures. Traditional peptide surfactants are often designed in a head-to-tail fashion mimicking chemical surfactants. Alternatively, a side-by-side design pattern based on heptad repeats offers an approach to designing peptide surfactants.
View Article and Find Full Text PDFAims: Mesenchymal stem cells (MSCs) are key components in promoting glioblastoma (GBM) progression. This study aimed to explore new therapeutic targets and related pathogenic mechanisms based on different MSCs infiltration levels in GBM patients.
Methods: We estimated the relationship between cell infiltration and prognosis of GBM.
Enzymatic degradation of plastics is a sustainable approach to addressing the growing issue of plastic accumulation. The primary challenges for using enzymes as catalysts are issues with their stability and recyclability, further exacerbated by their costly production and delicate structures. Here, we demonstrate an approach that leverages engineered spores that display target enzymes in high density on their surface to catalyze aliphatic polyester degradation and create self-degradable materials.
View Article and Find Full Text PDFThe coal-dominated electricity system, alongside increasing industrial electricity demand, places China into a dilemma between industrialization and environmental impacts. A practical solution is to exploit air quality and health cobenefits of industrial energy efficiency measures, which has not yet been integrated into China's energy transition strategy. This research examines the pivotal role of industrial electricity savings in accelerating coal plant retirements and assesses the nexus of energy-pollution-health by modeling nationwide coal-fired plants at individual unit level.
View Article and Find Full Text PDFEnzymes, as highly efficient biocatalysts, excel in catalyzing diverse reactions with exceptional activity and selective properties under mild conditions. Nonetheless, their broad applications are hindered by their inherent fragility, including low thermal stability, limited pH tolerance, and sensitivity to organic solvents and denaturants. Encapsulating enzymes within metal-organic frameworks (MOFs) can protect them from denaturation in these harsh environments.
View Article and Find Full Text PDFT cell-based adoptive cell therapy (ACT) has emerged as a promising treatment for various diseases, particularly cancers. Unlike other immunotherapy modalities, ACT involves directly transferring engineered T cells into patients to eradicate diseased cells; hence, it necessitates methods for effectively activating and expanding T cells . Artificial antigen-presenting cells (aAPCs) have been widely developed based on biomaterials, particularly micro- and nanoparticles, and functionalized with T cell stimulatory antibodies to closely mimic the natural T cell-APC interactions.
View Article and Find Full Text PDFThe study aimed to assess differences in proteomic and metabolite profiles in ageing (1, 2, 4, and 6 days at 4 °C) beef exudates and determine their relationship with beef muscle iron metabolism and oxidation. Proteomic and metabolomic analyses identified 877 metabolites and 1957 proteins. The joint analysis identified 24 differential metabolites (DMs) and 56 differentially expressed proteins (DEPs) involved in 15 shared pathways.
View Article and Find Full Text PDFThree-dimensional-structured metal oxides have myriad applications for optoelectronic devices. Comparing to conventional lithography-based manufacturing methods which face significant challenges for 3D device architectures, additive manufacturing approaches such as direct ink writing offer convenient, on-demand manufacturing of 3D oxides with high resolutions down to sub-micrometer scales. However, the lack of a universal ink design strategy greatly limits the choices of printable oxides.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
July 2023
As global warming becomes more prominent, the need to reduce carbon emissions to achieve China's carbon peak target is increasing. It is imperative to seek effective methods to predict carbon emissions and propose targeted emission reduction measures. In this paper, a comprehensive model integrating grey relational analysis (GRA), generalized regression neural network (GRNN) and fruit fly optimization algorithm (FOA) is constructed with carbon emission prediction as the research objective.
View Article and Find Full Text PDFResearch (Wash D C)
June 2023
Ionogels have garnered great attention as promising soft conducting materials for the fabrication of flexible energy storage devices, soft actuators, and ionotronics. However, the leakage of the ionic liquids, weak mechanical strength, and poor manufacturability have greatly limited their reliability and applications. Here, we propose a new ionogel synthesis strategy by utilizing granular zwitterionic microparticles to stabilize ionic liquids.
View Article and Find Full Text PDFThe topography is complex in the southwest karst region of China, with severe surface water scarcity but abundant groundwater resources. Studying drought propagation and vegetation demand for water is important to effectively protect the ecological environment and improve the management of water resources. We employed CRU precipitation data, GLDAS, and GRACE data to calculate SPI (Standardized precipitation index), SSI (Standardized soil moisture index), SRI (Standardized runoff index), and GDI (Groundwater drought index), characterizing meteorological, agricultural, surface water and groundwater droughts, respectively.
View Article and Find Full Text PDFSci Total Environ
July 2023
Xinjiang is a coal-rich region with many bare rocky and gravelly areas with a delicate and fragile ecology. What is the ecological impact of mining activities? In this study, the Salinity Index (SI-T), New Gravel Land Index (NGLI), and Land Deterioration Index (LD) were used to establish an improved remote sensing ecological index (IRSEI) for the HongShaQuan open-pit coal mine (HSQ). The spatial and temporal evolution of the ecological environment of the HSQ was revealed by IRSEI and unary linear regression analysis.
View Article and Find Full Text PDFFacing significant carbon emissions annually, China requires a clear decarbonization strategy to meet its climate targets. This study presents a MESSAGEix-CAEP model to explore Chinese decarbonization pathways and their cost-benefit under two mitigation scenarios by establishing connections between five energy-intensive sectors based on energy and material flows. The results indicated the following: 1) Interaction and feedback between sectors should not be disregarded.
View Article and Find Full Text PDFIntroduction: This study aimed to evaluate the relationship between 2-h post-load minus fasting plasma glucose (2hPG-FPG) and 1-year clinical outcomes, such as death, stroke recurrence, and modified Rankin Scale (mRS) ≥2-3 among acute ischemic stroke (AIS) patients without diabetes mellitus (DM) history.
Methods: 1,214 AIS patients without DM history, obtained from ACROSS-China, were divided into 4 quartiles, based on 2hPG-FPG measurements obtained 14 days post-admission. Four models were constructed using multivariate Cox and logistic regression analyses, based on the inclusion of age, gender, trial of ORG 10172 in acute stroke treatment, NIH Stroke Scale scores (model 1), plus 10 other clinical parameters (model 2), plus newly diagnosed DM (NDDM) post-admission (model 3), plus 2hPG and FPG (model 4).
Background: Hair follicle stem cells (HFSCs) are considered as a promising cell type in the stem cell transplantation treatment of neurological diseases because of their rich sources, easy access, and the same ectoderm source as the nervous system. Hepatocyte growth factor (HGF) is a pleiotropic cytokine that shows neuroprotective function in ischemic stroke. Here we assessed the therapeutic effects of HFSCs on ischemic stroke injury and the synthetic effect of HGF along with HFSCs.
View Article and Find Full Text PDFGroundwater drought monitoring relies on ground observation data, which cannot be used to reflect large-scale droughts in groundwater resources. The Gravity Recovery and Climate Experiment Satellite (GRACE) improved the situation and provided a new solution for groundwater drought research. However, the propagation relationship among global different drought types has not been fully explored.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2023
Cell membrane-coated nanoparticles are emerging as a new type of promising nanomaterials for immune evasion and targeted delivery. An underlying premise is that the unique biological functions of natural cell membranes can be conferred on the inherent physiochemical properties of nanoparticles by coating them with a cell membrane. However, the extent to which the membrane protein properties are preserved on these nanoparticles and the consequent bio-nano interactions are largely unexplored.
View Article and Find Full Text PDFZhonghua Wei Zhong Bing Ji Jiu Yi Xue
October 2022
Veno-veous extracorporeal membrane oxygenation (VV-ECMO) has been widely used in the treatment for severe acute respiratory distress syndrome (ARDS). Up to now, the routine access to establish VV-ECMO involves two-sites single lumen cannula via femoral vein and internal jugular venous in adult and children, while few studies about the dual lumen cannula (DLC) in VV-ECMO implemented in adult and children have been reported. On December 16, 2021, an unconscious child with severe ARDS due to multiple trauma caused by fatal falling from a height was admitted to Taihe Hospital.
View Article and Find Full Text PDFBiomacromolecules
November 2022
The incorporation of living cells into materials promises both significant challenges and new possibilities. Although recent years have seen important advances in this field, there is still much to be learned about engineering interfaces between cells and materials. Here, we present a new class of 3D-printable materials, based on poly(-hydroxymethylacrylamide) (PNHMAA), in which the spore-forming bacterium is effectively cross-linked into the surrounding polymeric scaffold.
View Article and Find Full Text PDFIntegrating artificial enzymes onto nanostructures target- and site-specifically is still a challenge. Here we show that target miRNAs trigger the formation of DNAzyme site-specifically at the tip of filamentous phage for detecting miRNA biomarkers. Through an antibody-modified oligonucleotide, the tip of the phage with magnetic nanoparticles on the sidewall captures a target miRNA, inducing the formation of DNAzyme that extends from the phage tip through a hybridization chain reaction.
View Article and Find Full Text PDFHere, we describe a stress-tolerant, recyclable, and renewable biocatalyst platform based on T7 RNA polymerase-enabled high-density protein display on bacterial spores (TIED). TIED uses high-level T7 RNA polymerase-driven expression of recombinant proteins specifically in sporulating cells to allow spontaneous assembly of recombinant fusion proteins on the spore surface. TIED enables high loading density in the range of 10 to 10 recombinant enzymes per spore, robust catalytic activity of displayed enzymes comparable to the respective free enzymes, and enhanced kinetic stability of displayed enzymes in methanol and elevated temperatures.
View Article and Find Full Text PDF